

MDN Browser Compatibility Report
If every single rendering, regardless of platform, would follow the standard
as closely as possible, that would be a beautiful world. – A Web Developer

The challenge of making web sites and applications work consistently across
browsers is well known to web developers and designers. In the 2019 MDN
Developer Needs Assessment, we learned that indeed it appears to be the overall
top pain point when building for the web, with four of the top five
frustrations/needs being related:

1. Having to support specific browsers (e.g., IE11).
2. (Outdated or inaccurate documentation for frameworks and libraries.)
3. Avoiding or removing a feature that doesn’t work across browsers.
4. Testing across browsers.
5. Making a design look/work the same across browsers.

The MDN Browser Compatibility Report is a deeper dive into these issues,
attempting to identify specific issues causing a lot of frustration, and what could
be done to improve the situation. The research consisted of a survey focused on
browser compatibility , followed by interviews with 13 volunteers among the 1

survey participants.

This research was conducted by MDN, reviewed by the MDN Product Advisory
Board and led by Philip Jägenstedt (Google), Robert Nyman (Google) and Kadir
Topal (Mozilla). See acknowledgments for full details.

1 In the web standards community, the term interoperability is commonly used to mean an API is
implemented and works the same way in multiple browser engines. Compatibility often refers to
web compatibility, meaning that an implementation works with web pages in the wild. In this
report, the terms are used interchangeably and refer to browser compatibility, with the same
meaning as interoperability.t

https://insights.developer.mozilla.org/
https://insights.developer.mozilla.org/

Table of Contents

Table of Contents 2

Summary 5

Survey 6
Categorizing Responses 6
Filtering Responses 7
Results 7

Satisfaction with the Web vs. browser compatibility 8
Overall top pain points 10
Feature areas that cause issues 11
Layout/styling feature that cause issues 12
Browsers/platforms that cause issues 13

Questions 14

Interviews 15

Findings 17
Features 17

CSS Flexbox 17
Web developer quotes 17
Flexbox in Internet Explorer 19
See also 20
Chrome bugs 20
Firefox bugs 20
Safari bugs 20

CSS Grid 20
Web developer quotes 21
Grid in Internet Explorer 22
See also 22

Responsive layout 22
Viewport 24

Web developer quotes 24
See also 26

Scrolling 26
Web developer quotes 27
See also 30

JavaScript 31
Web developer quotes 32
See also 34

Performance 34
Web developer quotes 35

Forms 36
Web developer quotes 36

Browsers 38
Chrome 38

Web developer quotes 38
Edge 39

Web developer quotes 39
Internet Explorer 39

Web developer quotes 39
Firefox 40

Web developer quotes 40
Safari 40

Web developer quotes 41
Samsung Internet 42

Web developer quotes 42
Other Themes 43

Access to devices 43
Web developer quotes 43

Breaking changes 44
Web developer quotes 44

Ongoing Work 46
CSS Flexbox & Grid 46
Microsoft Edge 46
Browser Compatibility Data 46

Acknowledgments 48

Appendix A: Survey Design 49

Appendix B: Top Pain Point Categories 53

Appendix C: Survey Results 63

Appendix D: Survey Results Excluding IE 74

Appendix E: Interview Study 83
Study Goals 83
Discussion Guide 83

Appendix F: Interview Transcripts 86
Participant 1 86
Participant 2 87
Participant 3 91
Participant 4 95
Participant 5 97
Participant 6 98
Participant 7 100
Participant 8 103
Participant 9 104
Participant 10 108
Participant 11 109
Participant 12 111
Participant 13 119

Summary
Both in the 2019 MDN Developer Needs Assessment and historically we’ve seen
that by far the biggest challenge for web developers is with regards to browser
compatibility. We wanted to learn exactly what areas and features are causing this
pain, and importantly what we can do to alleviate these, or even make them go
away.

To be able to do that we have aimed to provide as much detail and extensive
reporting as possible to create a foundation for browser vendors to gain an
understanding of the issues and offer them a starting point with as much
actionable feedback as possible.

We found that a lot of developers are struggling in particular with layout and
styling issues: CSS Flexbox, CSS Grid and problems achieving consistent layout in
recent browsers with dynamic viewport sizes and scrolling. JavaScript was often
mentioned, but turned out not to be problems with the core language and instead
numerous challenges with achieving browser compatibility with various Web APIs.

We heard about challenges with all major web browsers, and the largest number
of compatibility challenges were reported for Internet Explorer and Safari.

By preemptively sharing initial findings with browser vendors and working closely
with engineering teams, we’ve already seen concrete results and improvements
regarding:

● CSS Flexbox and Grid improvements in Chromium and WebKit
● Commitment to improved browser compatibility data on MDN

WIth Chromium-based Edge rolling out with Windows updates we believe
reported issues with Microsoft Edge Legacy and Internet Explorer will decrease.

We further plan to run the MDN Developer Needs Assessment survey again to
both surface new issues and see if existing ones have been addressed, and
establish an even closer collaboration between browser vendors to ensure
compatibility for a better platform for web developers.

https://insights.developer.mozilla.org/

Survey
The goal of the survey was to identify which individual features and browsers
contribute the most to web developer pain points around browser compatibility.
The target audience for the results is browser vendors, and we wanted the
findings to be as actionable as possible and make sense as input for prioritization.

In short, the survey asked about:

● Overall satisfaction with the Web (on a scale)
● Satisfaction with browser compatibility (on a scale)
● Overall top pain point with browser compatibility (free-form text)
● Feature areas that cause issues (fixed options)
● Browsers/platforms that cause issues (fixed options)

See appendix A for the full set of questions.

The survey was run on MDN in February/March 2020, and was also promoted on
Twitter, web.dev and developers.google.com in that period.

The 3,236 complete responses are available in redacted form in a public
spreadsheet. (The free-form responses were removed as they could and did
occasionally include personally identifiable information.)

Categorizing Responses
The survey’s main free-form question “Overall, what is your top pain point with
browser compatibility?” was categorized by hand and used to filter the results.

Only 64% of the responses answered this question, and those 2000+ answers
were categorized manually into 46 categories, up to 5 categories per answer. We
used the first or most prominent issue as the first category. For example “I don't
really like that chrome and firefox handles images inside flexbox differently” was
categorized as Flexbox, Chrome and Firefox, with Flexbox taken to be the top
issue.

See appendix B for all categories and examples.

https://twitter.com/ChromiumDev/status/1232251745893572610
https://web.dev/
https://developers.google.com/web
https://docs.google.com/spreadsheets/d/1zJtJFLlz2XXqrl9-ay1CQ89Hooh4NjxSXnjF7g2VZNw/edit

Responses that looked like bot activity or not possible to interpret were classified
as invalid. These were 20% of the total number of responses.

This process resulted in 1,429 valid responses (44%) and 1,807 excluded
responses (56%) where the latter includes both missing responses (36%) and
invalid responses (20%).

Filtering Responses
In our analysis, we decided to include only the valid responses, effectively using
our free-form question as a screening question. Generally, in the excluded subset,
the distribution between options is more even, which is consistent with more
random noise. However, it was not just noise and some proportion of those
responses must be from real, experienced web developers. Unfortunately, it’s not
possible to identify them without making some assumption about what a good
response looks like, which would likely only bias the results to what we already
think is reasonable.

This represents a flaw in the survey design. The free-form question should have
been required so that more of the responses could be identified as valid. This
likely biased the results in some way.

Because of this screening and that only 29% of the used responses came from
MDN, the results can’t be directly compared to the 2019 MDN Developer Needs
Assessment.

Results
The high-level survey results are summarized here. See appendix C for full results,
and the Findings section for a synthesis of survey and interview results with much
more granularity.

https://docs.google.com/spreadsheets/d/1zJtJFLlz2XXqrl9-ay1CQ89Hooh4NjxSXnjF7g2VZNw/edit#gid=68627928&fvid=2096072298
https://docs.google.com/spreadsheets/d/1zJtJFLlz2XXqrl9-ay1CQ89Hooh4NjxSXnjF7g2VZNw/edit#gid=68627928&fvid=2100668926
https://docs.google.com/spreadsheets/d/1zJtJFLlz2XXqrl9-ay1CQ89Hooh4NjxSXnjF7g2VZNw/edit#gid=68627928&fvid=2100668926
https://insights.developer.mozilla.org/
https://insights.developer.mozilla.org/

Satisfaction with the Web vs. browser compatibility
Overall for the Web, almost 75% are satisfied or very satisfied, which is very close
to the 2019 MDN Developer Needs Assessment results. The comparable number
for browser compatibility is 44%. This is a marked difference:

https://insights.developer.mozilla.org/

Overall top pain points
The ranking of overall top pain points is based on the aforementioned
categorization of free-form text responses. The percentages indicate what
percentage of valid responses mentioned the issue, and do not add up to 100%.

1. 24% Internet Explorer
2. 20% Layout and styling
3. 17% Safari
4. 10% General (expressing the broad problem of browser compatibility)
5. 7% Old browsers
6. 6% Chrome
7. 5% JavaScript
8. 4% None (expressing that browser compatibility isn’t a pain point)
9. 3% Slow adoption
10.3% Firefox
11. 3% PWAs
12. 3% Edge

Feature areas that cause issues

1. 48% Layout and styling (CSS, responsive layout, etc.)

This is further broken down below.
2. 26% JavaScript (core language)

Understanding this became a focus of our interviews, see findings. In our
estimation, JavaScript itself does not appear to be a major problem.

3. 19% Performance (APIs, scrolling, smooth animations)
See findings for more details. Scrolling was also a focus of our interviews,
see also those findings.

4. 16% Forms (autocomplete, styling, etc.)
See findings for more details.

5. 13% Web Components (shadow DOM, custom elements)
6. 13% Installable web apps (installation, notifications, etc.)
7. 13% DOM APIs (modifying elements, editing, selection, etc.)

This ranking is fairly consistent with the top paint points ranking, but Web
Components were mentioned less frequently in the free-form responses than
PWAs (installable web apps) and APIs.

Layout/styling feature that cause issues
We anticipated that layout and styling would be among the top pain points, and
asked a second question for those who chose it. (685 responses)

1. 39% Flexbox

See findings for more details.
2. 35% Grid layout

See findings for more details.
3. 31% Responsive layout

See findings for more details.
4. 25% Form elements

See findings for more details.
5. 23% Scrolling

See findings for more details.

This ranking is largely consistent with the top paint points ranking, although forms
were mentioned more than CSS Grid, and responsive layout wasn’t one of the
categories for that question.

Browsers/platforms that cause issues

● 70% Internet Explorer
● 50% / 46% Safari on mobile / desktop respectively
● 21% / 8% Edge on desktop / mobile respectively
● 12% / 11% Chrome on desktop / mobile respectively
● 12% / 7% Firefox on desktop / mobile respectively

This ranking is consistent with results of the top paint points ranking, with the
exception of Edge which was mentioned less than Firefox there.

See findings for more details on each browser.

Questions
After reviewing the survey responses we had some questions about things that
we had not expected or didn’t understand in the results. In particular, we were
surprised to see JavaScript (core language) rank #2 among feature areas.

For layout/styling features we also wanted to understand more about the pain
points participants had in mind when choosing responsive layout.

Finally, we wanted to get a few more concrete examples of pain points around
Internet Explorer, Safari, CSS Flexbox and Grid, as these were the top categories
in overall top pain points. However, these were deprioritized after a few
interviews, see below.

Interviews
To add more detail to our survey results, we recruited participants to an interview
study from those who agreed to be contacted again. Roughly 100 survey
respondents were contacted, based mostly on what they had written in the
free-form survey questions. The accept rate was higher than expected, so we
ended up conducting 13 interviews.

Most of the interview participants were very experienced, with 2 participants
having 20 years of experience and 8 more falling in the 5-15 range. We don’t know
if this is representative of all survey participants, but suspect the interview
participants were more experienced on average. Most of the participants were
building for both desktop and mobile. We had a mix of developers working
in-house vs. agencies, and also a mix of public (general audience) vs. internal web
properties.

We did not ask exactly the same questions of all participants, and after the
second day of interviews we decided to deprioritize the goals/questions around
Internet Explorer, Safari, CSS Flexbox and Grid. This was because we found there
was more to learn about the other topics, where we had more unanswered
questions. These deprioritized topics still came up naturally in some interviews,
however.

The main findings from the interviews were:

● Responsive layout: When asked about responsive design, most participants
brought up issues around viewport size/units, scrolling, as well as their use
of Flexbox, Grid, etc. These led to the detailed findings below. Contrary to
our expectations, we did not hear about challenges with media queries, one
of the building blocks of responsive design.

● Viewport: Covers dealing as a developer with the dynamic viewport size on
mobile and adapting the content to the visual viewport. A lot of this is
around how the vh unit interacts with the URL bar on mobile browsers, and
originally being different across mobile browsers. Getting desired results is
still hard for developers.

● Scrolling: A number of challenges around scrolling were detected, such as
customization of scrolling, APIs to control it, events that fire during
scrolling, and scroll performance. We’ve confirmed that there are many
differences between mobile browsers, causing a lot of developer pain.

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Responsive/responsive_design_building_blocks#Media_queries

Identified use cases include when JavaScript scrolling has been
implemented to address native scrolling shortcomings, such as overscroll
and scroll snapping.

● JavaScript: Most participants had no issues with the JavaScript language
itself, and many of them attributed this to use of transpilers like Babel. Even
those few participants that wrote mostly vanilla JavaScript without any
tooling didn’t feel that browser compatibility was a big problem. We suspect
that when survey participants selected “JavaScript (core language)”, this
was driven mostly by issues related to JavaScript, but usually not the core
language.

These and other findings are incorporated into the following section.

See appendix E for the full study goals and discussion guide, and appendix F for
partial interview transcripts.

Findings
This section brings together findings from the survey and interviews with some
additional context to try to paint as detailed and nuanced a picture as possible of
the top pain points relating to browser compatibility. It is organized into features,
browsers and other themes.

Features
Through the survey and interviews we heard about many issues, ranging from
very specific bugs to a general sense that a feature isn’t ready to use. In this
section we cover roughly the top four feature areas that cause issues. The first
two of these were the focus of our interviews.

CSS Flexbox
Flexbox was the most selected option (39%) for layout/styling features causing
issues. It was also the specific feature most often mentioned (39 times, 2.7%) in
free-form survey responses.

That compatibility issues with Flexbox are top-of-mind is consistent with the high
awareness and usage of the feature. In the State of CSS 2019 survey almost
everyone knew about Flexbox and 95% used it. Usage in the wild is around 70% of
page views, per chromestatus.com.

We heard about issues both with old browsers like Internet Explorer, but also
difficulties achieving a consistent layout in recent browsers. Notable issues are
support for gap (gutters) and bugs around the sizing of “replaced content”, like
images and fieldset. Several of these are in the process of being fixed at the time
of writing.

Web developer quotes

A selection of quotes from the survey responses:

Flexbox bugs in all major browsers except for the old EdgeHTML version of
Edge

https://2019.stateofcss.com/features/
https://www.chromestatus.com/metrics/feature/timeline/popularity/1692
https://developer.mozilla.org/en-US/docs/Web/CSS/gap#Browser_compatibility

I still find differences in flexbox and grid. I also had one with object fit
recently. When the image was 100% tall Chrome would shrink the image
height. Other browsers tried to show the full image height as expected.

I don't really like that chrome and firefox handles images inside flexbox
differently

Chrome's calculation of flex with overflow really bit me. While Firefox and
Safari were doing the calculation correctly. I had to read a bunch of bug
tickets to find out that adding min-height to my div was needed.

Chrome doesn't support the gap property with Flexbox.
https://bugs.chromium.org/p/chromium/issues/detail?id=762679

Internet Explorer (still supporting 11) especially regarding Flexbox.

Long standing bugs in only one browser, such as the flexbox bug with
fieldset in chrome. Just fix it already.

Flexbox also came up in some interviews. One participant reported this as their
main pain point, especially with vertical layouts:

Most of the problems I’ve had have been with Flexbox. Especially when you
apply Flexbox in a layout you have to be aware of the different syntax for
different browsers, and that’s really painful. If you forget something you can
have issues in some browsers. I’ve had a lot of problems with vertical
Flexbox and Safari, for example. Even having a specific syntax it doesn’t
behave the same way, I think, in vertical Flexbox. Where you apply Flexbox
to columns and not rows and want to center whatever content vertically,
I’ve had a lot of issues with that. Specifically things like flex auto, flex 100%,
I’ve been having to apply that specifically for Explorer and Edge. […] I
wasn’t able to fix it, so I had to get rid of Flexbox, finally, and apply table
displays for what I wanted to achieve. […] The layout was: everything was
vertically centered in the layout, the whole content, and it had to be always
centered in the screen, in the browser, and I couldn’t use Flexbox for that. I
also think we normally tend to use Flexbox for things that it’s not intended
for, and I think that’s because we didn’t have CSS Grid until now, until very
recently.

https://bugs.chromium.org/p/chromium/issues/detail?id=762679

Another interview participant reported problems achieving the same height of
Flexbox layouts cross-browser:

We had a carousel, and all the slides should have the same height, the
height should be dependent on the highest slide. So Flexbox, Flexbox,
another Flexbox, all nested inside each other. We didn’t start from scratch,
obviously, we just used a slider component that was already there. The
slider component is not the issue here, in this case. Flexbox had
differences between Firefox and WebKit- or Blink-based browsers. We
couldn’t achieve these equal height slides on anything but Gecko. In
Gecko it worked fine, in all other browsers it did not, so we also needed to
have a JavaScript solution here. Doing layout calculations in JavaScript is
never clean, it always feels a bit dirty, but in this case the slider’s based on
JavaScript anyway, so we made this tradeoff. […] The way Glide.js works is
you get a container where all the slides are stored and it uses Flexbox for
display values, as far as I know. You should usually be able to give each
slide the same height, but it didn’t work in anything but Firefox. Don’t know
why.

Among the things that bug me the most, it’s mostly little differences in
Flexbox implementation. Of course we have to support IE11, but even in
other browsers you see a lot of differences. This is something you face
almost on a daily basis. You know your way around it, especially with IE11,
after a while. But I think there are still some bugs that remain, even in
modern browsers.

Finally, one interview participant expressed that Internet Explorer had been
especially problematic with regards to Flexbox:

All the Flexbox gotchas that IE has are pretty frustrating, and I’m intimately
aware of many of them. This is actually the first time I’ve not had to support
IE in my career, so it’s pretty nice. […] A lot of the flex issues were around
height and flex-grow or flex-shrink. Just simple things like explicitly setting
a height on the flex child would fix the issues.

Flexbox in Internet Explorer

Internet Explorer 11 supports Flexbox without prefixes but with a number of
well-known issues, many of which were fixed in Edge. Several comments
suggested that Flexbox is a bigger pain point when supporting Internet Explorer.

https://github.com/philipwalton/flexbugs
https://github.com/philipwalton/flexbugs

In appendix D we looked at the survey responses that did not indicate any issue
with Internet Explorer, and Flexbox was no longer the most selected option for
layout/styling features causing issues. However, it does still appear to be a
significant pain point.

See also

● Flexbox on MDN
● Flexbox and gap on caniuse.com
● Flexbox test results on wpt.fyi
● Flexbugs list of flexbox issues and cross-browser workarounds

Chrome bugs

These are the specific Chromium bugs we were able to identify:
● [css-flex] Add gutters support in Flexbox
● [css-flex][css-grid] Flexbox/grid layout model does not work on fieldset

elements
● [img flex-basis] Flexbox doesn't scale down images correctly

Firefox bugs

This is the specific Firefox bug we were able to identify:
● [css-flexbox] A non-default "flex-basis" incorrectly prevents min-size:auto

from being clamped by specified size

Safari bugs

These are a few specific WebKit bugs we were able to identify:
● [css-flexbox] Implement row-gap and column-gap for flex layout
● [css-flexbox] min-height: auto not applied to nested flexboxes
● [css-flexbox] min-height:auto not updated after an image loads when the

image has a specified height and width

CSS Grid
Grid was the 2nd most selected option (35%) for layout/styling features causing
issues. It was also frequently mentioned (23 times, 1.6%) in free-form survey
responses.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout
https://caniuse.com/flexbox
https://caniuse.com/flexbox-gap
https://wpt.fyi/results/css/css-flexbox
https://github.com/philipwalton/flexbugs
https://bugs.chromium.org/p/chromium/issues/detail?id=762679
https://bugs.chromium.org/p/chromium/issues/detail?id=375693
https://bugs.chromium.org/p/chromium/issues/detail?id=375693
https://bugs.chromium.org/p/chromium/issues/detail?id=625560
https://bugzilla.mozilla.org/show_bug.cgi?id=1316534
https://bugzilla.mozilla.org/show_bug.cgi?id=1316534
https://bugs.webkit.org/show_bug.cgi?id=206767
https://b.webkit.org/show_bug.cgi?id=210089
https://bugs.webkit.org/show_bug.cgi?id=210475
https://bugs.webkit.org/show_bug.cgi?id=210475

The State of CSS 2019 survey suggests very high awareness but less usage of
Grid than Flexbox. Usage in the wild is around 6% of page views but growing
steadily, per chromestatus.com.

The source of frustration with Grid appears to be different to Flexbox. When
supporting old browsers, mainly Internet Explorer, Grid support is limited. In more
recent browsers, one issue that came up multiple times is support for Subgrid,
which at the time of writing is only supported in Firefox. We did not hear about
other issues, and one developer saw Grid as a success story.

Web developer quotes

One interview participant expressed that supporting Internet Explorer limits the
use of the latest grid features:

We have to support IE11 and Grid support is limited. This often requires
heavy workarounds, so you always have to do a lot of things with the help
of additional JavaScript that you wouldn’t need to do otherwise.

Simple grids work in IE11 as well, it’s often much easier to do things even
without having all the latest grid features available. For other projects I’m
starting to transition to grid layout. I wouldn’t say I use it 100%, Flexbox also
has its use cases. I think back then I avoided using Grid, I still try to get
around it especially with older devices in mind.

Another participants, who also did support IE11, instead expressed how CSS Grid
has been a success story for them, in terms of being implemented in all browsers
and behaving correctly:

We’re starting to use it right now. I think it’s kind of becoming stable right
now, all browsers have implemented CSS Grid. I don’t think you can use it
for every kind of layout, either, it depends on the layout you want to
implement, but it’s really useful. And it behaves correctly, I think that’s been
one of the great things, because every vendor has implemented that, and
that’s been like a success for us. Because you’re sure you can use it and
you’re not going to have big issues with it. So that is great, yes.

See also the Responsive layout section for a related finding, where Bootstrap’s
grid system was credited with fixing (or avoiding) some issues. (Note that

https://2019.stateofcss.com/features/
https://www.chromestatus.com/metrics/feature/timeline/popularity/1693
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Subgrid

Bootstrap’s grid system is built on Flexbox, not Grid, so this doesn’t say much
about CSS Grid.)

Finally, a selection of quotes from the survey responses:

Not being able to use ES6 or CSS Grid years after their introduction, having
instead to still rely on outdated, hacky workarounds.

Slowness in Chrome to implement new CSS layout like gap for Flexbox or
subgrid.

I want to use css grid, flexbox etc but I still need to support legacy safari

Grid in Internet Explorer

Internet Explorer 11 supported an -ms-prefixed version of CSS Grid.

In appendix D we looked at the survey responses that did not indicate any issue
with Internet Explorer. In layout/styling features causing issues, Grid then appears
to be much less of a problem, falling from #2 to #6 in the ranking.

This together with interview comments suggest that when supporting Internet
Explorer, Grid is a significant source of issues or cannot be used, but that in more
recent browsers, Grid is much more interoperable and less of a pain point.

See also

● Grid and Subgrid on MDN
● Grid and Subgrid on caniuse.com
● Grid and Subgrid test results on wpt.fyi
● Gridbugs list of bugs, incomplete implementations and interop issues
● [css-grid] Implement subgrid support Chromium bug
● [css-grid] Add support for subgrid (Grid Level 2) WebKit bug

Responsive layout
Responsive layout (or responsive design) can mean many things, and in our extra
question about layout and styling features we did not specify exactly what this
meant. This option was ranked #3 overall and tied for #1 when excluding IE.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Subgrid
https://caniuse.com/css-grid
https://caniuse.com/css-subgrid
https://wpt.fyi/results/css/css-grid
https://wpt.fyi/results/css/css-grid/subgrid
https://github.com/rachelandrew/gridbugs
https://bugs.chromium.org/p/chromium/issues/detail?id=618969
https://bugs.webkit.org/show_bug.cgi?id=202115
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design

However, “responsive” was only directly mentioned a handful of times in free-form
survey responses. Rather, the clearest theme that might be related was dealing
with the dynamic viewport size on mobile: mainly how viewport units work and the
effect of URL bar on the viewport size and scroll/resize events.

Understanding the pain points that web developers associate with responsive
layout became a main study goal for the interviews. The question to interview
participants was typically asking for a recent time when they’d had trouble making
a design work on both desktop and mobile, only sometimes directly mentioning
“responsive layout” or “responsive design.” This often led to a discussion of issues
pertaining to scrolling, and where not we would sometimes ask about that
separately.

Findings from these part of the interview study are in the following sections:

● Viewport issues, namely dealing with the dynamic viewport size on mobile
and adapting the content to the visual viewport.

● Scrolling issues, like customizing vertical and horizontal scrolling, APIs for
scrolling, events that fire during scrolling, and scroll performance.

It’s also notable that two interview participants mentioned using the Bootstrap
grid system when asked about desktop/mobile/responsive issues. One of them
explained why it’s helpful:

We use a grid system from a project called Vuetify, which is part of the Vue
ecosystem. It’s based on the Bootstrap grid system. It’s well tested, it’s
cross-browser, so fortunately we don’t have to worry too much about
layout issues. […] Just having a grid system that’s well supported and
tested by other parties is a super helpful tool.

The other participant reported running into a problem on that same day, which
was fixed by a newer Bootstrap release:

My colleagues asked me for support for a newly made application in
another team. It was due to a bug in Bootstrap 3. There was a box which
went on a new line in only iOS, just today. It was a bug on the grid of
Bootstrap 3, which was fixed in Bootstrap 4.

While we did not get details about these cases, clearly frameworks smooth over
some differences between browsers, and developers can benefit from that.

https://getbootstrap.com/docs/4.0/layout/grid/
https://getbootstrap.com/docs/4.0/layout/grid/
https://vuetifyjs.com/
https://getbootstrap.com/docs/4.0/layout/grid/

Viewport
The viewport is the part of a page visible to the user, and is something every web
page designed to work on mobile devices has to consider. The issues raised were
mostly about how the vh unit interacts with the URL bar on mobile browsers,
explained in the “The trick to viewport units on mobile” article on CSS-Tricks.
Another factor here might be about not having a specification for the viewport.
These issues are tightly linked to scrolling.

Part of the frustration can be attributed to the behavior of vh units originally being
different across different mobile browsers. It could also be about a discrepancy of
understanding about the vh unit between developers and the CSS WG, see
[css-values-4] Add vhc value.

While Chrome 56 changed its behavior to match Safari on iOS, some developers
may not have noticed this, and it remains difficult to achieve the desired effect.
There is an open CSS Working Group issue to address this. In the meantime some
developers have turned to -webkit-fill-available or JavaScript workarounds.

The effect of scrollbars on the vw unit also came up, and was the subject of
another CSS Working Group issue, resolved as “Drop the requirement to subtract
scrollbar size from vh/vw units for overflow scroll.” While not a browser
compatibility issue, a platform compatibility issue of sorts remains, as some
platforms have classic scrollbars and some have overlay scrollbars. Some are also
implementing their own scrollbars and hiding the native one.

In response to these findings, Chrome’s input team did some investigation of
viewport units, confirming that Chrome and Safari now have the same behavior.

Web developer quotes

In our interviews, one participant told us about viewport sizing issues and the
workaround they use:

Then there’s the odd viewport sizing in iOS that was a little bit of an
annoyance. I kind of read the whole, long bug tracker thread in the WebKit
forum about why they decided to size the viewport units the way they did.
And it makes sense, I understand the logic, but we did have to figure out a
few workarounds for a couple of our screens.

https://developer.mozilla.org/en-US/docs/Web/CSS/Viewport_concepts
https://css-tricks.com/the-trick-to-viewport-units-on-mobile/
https://github.com/w3c/csswg-drafts/issues/4766
https://github.com/w3c/csswg-drafts/issues/4329
https://developers.google.com/web/updates/2016/12/url-bar-resizing
https://github.com/w3c/csswg-drafts/issues/4329
https://github.com/w3c/csswg-drafts/issues/1766
https://www.chromium.org/teams/input-dev
https://docs.google.com/document/d/1w5OWXH5ni3V6POkCkMMUJ-_yEw7_1I4u8PlRQsbaDeA/edit#heading=h.2h8pk6w3vzkj
https://docs.google.com/document/d/1w5OWXH5ni3V6POkCkMMUJ-_yEw7_1I4u8PlRQsbaDeA/edit#heading=h.2h8pk6w3vzkj

On iOS, as I’m sure you know, as you’re scrolling the address bar will
collapse. The viewport size is calculated based on the collapsed size of the
header. If you want, say a full page screen, that fills the screen but no
more, then you can’t use viewport units. There is some webkit-specific
stuff baked into Safari that we ended up using that will avoid that problem.
But that was one of our initial stumbling blocks when we were trying to
have a full-screen, non-scrollable view in mobile Safari.

We use -webkit-fill-available to handle that. That was the primary fix we
found for the 100vh size issue in mobile Safari.

Two other interview participants also reported having issues with viewport units,
either accepting that things didn’t look right or using JavaScript workarounds:

It was either something about vw or vh for the viewport width and height.
Or percentages for widths and heights. It was some irregularity with that,
and although it was perfect on Chrome and Firefox, it just did not look
correct on Safari. We still support it, because it still works with the
dashboard that we’ve been building, but some of the things don’t just quite
look right.

Also things like vh, the viewport height […] I don’t entirely remember all the
details, I just remember that it was different across browsers. I think
whether the scrollbar is considered part of vh height is a little bit undefined,
and it’s definitely different in Safari and Chrome. […] The scrollbar thing in
many cases might not be a big problem, if you do 100vw then it’s going to
be a problem because you’re going to have differences on the browser
edge, but if it’s 50% of the browser width then you’re probably not going to
care so much if scrollbars are included or not. Then just individual
workarounds. If you really needed to be, maybe do it with a bit of
JavaScript, with resize event listener and check the browser properties
window.clientWidth, whatever works, test which combination of these is
going to work to fix a given problem.

Finally, a few quotes from the survey responses:

Is the URL bar part of 100vh?

Mobile browser compatibility regardless to when I'm trying to set the web
page height to 100% (or flex stretch, or via JavaScript window.innerHeight).
This is because of browsers top/bottom native UI bars inconsistency (which
appear/disappear on scrolling).

The treatment of viewport units, especially on mobile devices. For desktop:
100vw includes vertical scrollbar width, therefore nigh unusable esp. for
windows because it causes hor. scrollbar (often not recognized by
developers on macs) For mobile: treatment of 100vh and browser GUI is a
PITA.

Touch screen devices are problematic. There are bugs but also it would be
handy to have more control of display of keyboard, etc.

See also

● Virtual Keyboard API, a proposal for changing the interaction between the
virtual keyboard and the viewport size on mobile. The “more control of
display of keyboard” in the above quote is likely about this, but it didn’t
come up in interviews like we had expected.

Scrolling
A few different types of scrolling-related issues came up in the survey and
interviews:

● The effect of shrinking/hiding URL bar when scrolling on mobile devices on
the viewport size. Developers sometimes hardcode the expected height of
the URL, which is a risky approach. Some of this is covered in the viewport
section.

● Difficulties controlling native scroll, sometimes falling back to using
JavaScript instead. This includes overscroll behavior, scroll snapping, etc.

● Differences in behavior or support for scrolling-related APIs like
scrollIntoView.

In response to these findings, Chrome’s input team did some investigation of
scroll behavior, confirming that there are indeed many differences between
mobile browsers.

https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/da5eec87ea4c49da3b97a3a07ddca8d7232a037e/VirtualKeyboardAPI/explainer.md
https://www.chromium.org/teams/input-dev
https://docs.google.com/document/d/1w5OWXH5ni3V6POkCkMMUJ-_yEw7_1I4u8PlRQsbaDeA/edit
https://docs.google.com/document/d/1w5OWXH5ni3V6POkCkMMUJ-_yEw7_1I4u8PlRQsbaDeA/edit

Web developer quotes

One interview participant went into great detail about the challenges getting
touch interactions to work well on mobile for a “room planner” mobile web app. A
condensed excerpt of the transcript of that interview follows:

But what was really difficult was to get all the touch interaction right. It’s
really not a page […] you can pan, you can zoom, you have all of these
interactions and it’s really not a page that you want to scroll on.

We just struggled with stuff like the browser bar. If you want to scroll,
maybe you have a scroll container somewhere inside, and then the browser
bar appears and disappears. And you don’t get resize events when the
browser bar is in the process of disappearing, it just resizes after the
browser bar disappears completely. Maybe in between it’s not going to
look so nice.

Like what Google Maps does […] you can pull it up from the bottom, then
you have the details about a place. We had something similar to that for
individual products on the wall. First we wanted that to have that be a
native scroll interaction because we thought if it’s just a native scroll it’s
going to be fast, it’s going to be hardware accelerated, it’s going to feel
the nicest. But if you’re working with native scroll it’s very difficult to control
it, because for example scroll event listeners are – for a good reason –
passive now.

I made the mistake of trying to use native scroll for something where I
wanted to have too much control, again. If you scroll and there’s a certain
scroll velocity, and you lift your finger up and it keeps on scrolling, and it
reaches a certain threshold and you want to have it snap there. […] If you
want to do it by JavaScript you can set the scroll position. On iOS I think
that’s going to stop the scroll velocity immediately. On Chrome it snaps
to that point but it keeps on scrolling with the same velocity. […] So it’s
pretty much impossible to control that. In the end I think we had to
completely redo the scrolling […] and just do all the scrolling by
JavaScript.

I wanted to build a “simple” horizontal slider on a completely different
project. I first thought it’s just horizontal scrolling, if I’m going to use native

scroll that’s going to work fine.[…] Again I ran into a problem, if you want
to control that, you want to have your own snapping behavior, and control
the snapping via JavaScript.

I think there’s now the CSS snap points API, which is kind of covering that. I
haven’t heard that much about it, either because I just didn’t know about
the API, or it’s really, really new and it’s not widely supported. […] I think the
API would kind of cover that use case, and you can just have snap points
defined in CSS and don’t need JavaScript at all because it’s all handled
natively.

Also it’s important to differentiate between a single touch and a scroll. […] If
the user starts moving the carousel and then decides to also move their
finger up and down, you don’t want the browser to suddenly start a scroll
interaction. You can do it on iOS, because on iOS you can call
preventDefault() on the touchmove event, if the touchmove event hasn’t led
to a scroll yet. […] On Chrome you can’t do that and you have to stop the
touchstart event […] but then you don’t know in which direction the user is
scrolling. […] Finding these things out is very difficult and very time
intensive. I’ve done a lot of demos and codepens experimenting with
browsers. It’s very frustrating because there’s not really standards for it, or
documentation and stuff. […] It was just very difficult to get these things
working, like really, really, really difficult. We did a lot of iteration, a lot of
testing, over time. I kind of got really obsessed with making scrolling really
nice on mobile and trying to make native-like applications on the web that
don’t feel like they’re just a glitchy web page.

Extra thanks to the anonymous participant who volunteered their time and
expertise here, to help shed light on this complex set of problems.

Another interview participant explained how they need to use a JavaScript library
to just get consistent scroll behavior across all browsers:

What gives me the most headaches is typically scrolling behavior of iOS. If I
need to display a modal or something like a typical hamburger menu. It
annoys me that I need a JavaScript library just to get this right, so that if I
get a modal, that the background doesn’t scroll on iOS. I think that’s
basically the worst issue that you stumble across in almost every project.
[…] The goal is always that you lock scrolling completely. There’s a good

library for that, it’s not even large, it’s a small JavaScript dependency. But it
annoys me that you need these workarounds for doing simple stuff like
that.

The library was later confirmed to be body-scroll-lock, where bodyScrollLock.js
indeed does a bunch of work only for iOS. It has 269k npm downloads per week,
which has to be considered a lot for a browser compat workaround.

Another developer had issues with scrollIntoView’s “smooth” mode not being
supported on Safari, also requiring the use of a JS workaround:

For “scroll to element”, there’s a “smooth” property […] I think it’s Safari that
doesn’t support [it]. We just added a polyfill for it, it’s like 2 KB so it’s not a
big deal. Fortunately the build systems we have are pretty good at putting
in a polyfill for what’s not widely supported.

That same developer had also encountered issues on Firefox for iOS:

I’ve encountered a scroll issue in Firefox on iOS where there’s something
about the way that Safari is embedded in the iOS app that messes up scroll
position sometimes. Because I think that Safari embedded is calculating
internal values based on what it thinks is the viewport, and the app is
actually wrapped in a smaller viewport because of the UI controls. That’s
my guess. So the scroll is a little bit off and I have to scroll with two fingers
sometimes to get it to like jump out of the containing window.

The overscroll behavior of mobile browsers, sometimes called scroll bouncing” or
elastic scroll, came up in multiple interviews:

Apple adds a little custom scroll at the end of pages. There’s a special
effect when you scroll to the end. That behavior was kind of disturbing us
in one of our layouts that we had built for desktop and mobile. The scroll
worked fine in Chrome on iOS and in Chrome and Safari on macOS. But in
Safari for iOS […] that scroll was interfering with our scroll. Sometimes, if
you slide somewhere it would scroll and if you slide with a different angle or
you slide very fast then the scroll wouldn’t work directly. That was an issue
where there was no solution or help on the internet, so we had to get
creative and redesign some of the screen to get around this problem. I
don’t really know what that problem actually is, but most of the internet

https://github.com/willmcpo/body-scroll-lock
https://github.com/willmcpo/body-scroll-lock/blob/master/src/bodyScrollLock.js
https://www.npmjs.com/package/body-scroll-lock
https://developer.mozilla.org/en-US/docs/Web/API/Element/scrollIntoView

help we found was about Apple’s custom scroll animation at the bottom
interfering with the browser, or something like that.

Differences in timing of events and callbacks also came up:

I did notice that scroll events are fired differently in Safari vs. everyone
else. Safari would… I took a few stabs at this and in the first stab, Safari
would only fire the scroll event after the scroll had finished. So I ended up…
the workaround I used for that was to just use touchmove and just call the
same… Basically I had a render loop running, in a requestAnimationFrame
loop, and I would update things in the touchmove event in addition to the
standard scroll on Safari. That was one issue I came across.

Finally, a few quotes from the survey:

Controlling scroll behavior: when does a touch lead to a scroll? Is it
cancelable? […] Does resize fire for browser elements appearing and
disappearing? When does it fire?”

content behind dialog scrolls in safari - no easy way to disable this "feature"

the HtmlElement.scrollIntoView() method which is rather well supported,
but if you need to scrollIntoView on the horizontal axis, only Firefox
supports it (Chrome and Safari don't).

CONTROL OVER HOW PARTS OF THE PAGE SHOULD BEHAVE WHEN
SCROLLING

See also

● CSS Scroll Snap on MDN
● CSS Scroll Snap on caniuse.com
● CSS Scroll Snap test results on wpt.fyi
● CSS overscroll-behavior on MDN
● CSS overscroll-behavior on caniuse.com
● CSS overscroll-behavior test results on wpt.fyi
● scrollIntoView on MDN

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Scroll_Snap
https://caniuse.com/css-snappoints
https://wpt.fyi/results/css/css-scroll-snap
https://developer.mozilla.org/en-US/docs/Web/CSS/overscroll-behavior
https://caniuse.com/css-overscroll-behavior
https://wpt.fyi/results/css/css-overscroll-behavior
https://developer.mozilla.org/en-US/docs/Web/API/Element/scrollIntoView

JavaScript
We asked in the survey about feature areas that cause issues, and “JavaScript
(core language)” was the 2nd most chosen option, chosen by 26% of survey
respondents.

The “core language” parenthetical was added to direct survey takers to other
options where appropriate, especially DOM APIs. Unfortunately, the boundaries
between JavaScript and the rest of the web platform are not easy to understand.
For example, encodeURIComponent is defined in the ECMAScript Language
Specification while the URL interface is defined in the URL Standard.

Understanding if web developers do face a compatibility problem with JavaScript
itself became a main study goal for the interviews. We typically asked "can you
talk about a recent time you had a browser compatibility problem with JavaScript"
and listened to what the interview participants had to say.

The pattern that emerged from our interviews, and which is consistent with the
free-form survey responses that mentioned JavaScript, is that most web
developers don’t face big issues with browser compatibility for JavaScript as a
language. Use of transpilers like Babel appears widespread, and even those who
wanted to avoid transpilers did not say it was very difficult to deal with browser
compatibility.

When asking about issues with JavaScript, the concrete things raised were mostly
not part of ECMAScript, but the wider web platform. However, no specific issue
came up twice. There is likely a long tail of issues affecting all parts of the
platform, which can manifest in JavaScript code, and which together could explain
why JavaScript showed up the way it did in the survey results.

It is worth noting that in both survey responses and in some interviews, we heard
from web developers who would perhaps rather not use transpilers, either due to
the added complexity or the increased code size.

Finally, a small caveat. The web developers who volunteered for our interviews
were very experienced. It is plausible that more novice web developers would not
work around JavaScript compatibility issues using transpilers or polyfills as
readily.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/API/URL

Web developer quotes

In the survey responses, no specific parts of JavaScript (ECMAScript) were
pointed out, but there was a theme of not knowing what’s supported and needing
transpilers or polyfills:

Sometimes just can figure out what version of ECMAscript is OK on a
specific version of browser.

ES6 features support on old browsers. We need to write polyfills for old
browsers

new ES6 features are still incompatible with firefox chrome etc. babel do
this job but conversion takes much time to debug code.

The javascript part, I know if I use webpack and babel it could save my
problem. But native support is always what i looking for.

Running code through transpilers often means that code is bloated and
large file sizes

Supporting IE browsers without having polyfills installed for ES6 features.

Most of our interview participants expressed that dealing with JavaScript isn’t
very problematic, attributing this mainly to the rise of transpilers like Babel in
recent years:

Obviously there are differences in support, but these are really not that
problematic because you know what’s supported and not, and it’s very
easy to deal with that. […] In most projects I have a fairly common stack of
Babel and Webpack, and also Babel polyfills. Babel became very popular
for all the syntax stuff in the last couple of years, and I kind of see it as a
given now, even though I also think that now, a couple years after it really
became adopted, maybe starting from 2020 it actually should be an option
to think about, if you actually need Babel in your build stack. […] There’s a
project from the New York Times, polyfill.io, that does testing for browser
features and lazy loads the polyfills. I always thought that was interesting to
consider but […] for now my approach is to keep the amount of polyfills we
load in not too big, just see it as a necessary evil of probably 30%

https://polyfill.io/

overhead of the bundle is just damned polyfills you don’t need in modern
browsers. […] It was easier on our build stack to do it like that.

Fortunately it’s pretty good these days. We support pretty much the last
two major versions of any major browser, so JavaScript is in a state where
it’s pretty solid. We do use polyfills for things that are not supported and
that’s managed by our build system. We have the TypeScript compiler
adding in its polyfills. […] By and large I think most of the JavaScript we’re
using is pretty standard now, it’s pretty well supported.

With Babel and preset-env available, it kind of polyfills things that aren’t
there, so I didn’t notice anything. I’m very grateful that the Babel team has
made those types of incompatibilities a worry of the past, because
everything gets polyfilled automatically.

Thank god now we have transpilers which do the dirty job for you. […]
Lately not much concern with JavaScript/ECMAScript/TypeScript
compatibility because we have very, very good polyfills and transpilers, so
there is not much concern about ECMAScript.

I used to work with full JavaScript but having Webpack to fix different
compatibility issues is less work done for better work done.

The only concrete example we heard about concerning JavaScript language
support came up when asking about Internet Explorer, and was quickly identified
and resolved:

I think it was a missing polyfill, a JavaScript polyfill […] Something around
Object.entries() or something like that […] so I just opened the IE devtools,
saw the error and understood a polyfill was needed. That was a polyfill
available in the core-js library, which is a library that has a lot of polyfills for
modern JavaScript features, ES6 and more, and you can cherry-pick the
feature you want so that you don’t have to import a full library of polyfills,
just import the one you need.

Much as we had expected, some participants raised issues which were found in
JavaScript code, but which aren’t about the JavaScript language itself:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/entries
https://github.com/zloirock/core-js

Because we are supporting Internet Explorer 11, it limits the amount of
modern JavaScript we can use. […] So I’m dealing with new things that are
“old hat” for most people, but I didn’t realize that if you have an element and
use classList.add(), you can’t add two classes at the same time in Internet
Explorer 11. […] I haven’t done anything with ES6 at all, I’m just trying to get
going with vanilla JavaScript that’s going to work in IE. I haven’t found it
incredibly difficult, but some people on our team do often use ES6 and
transpile it for older browsers.

Another issue was likely related to parsing of HTTP headers:

There was a difference between Firefox and Chrome when it came to
CORS. […] For some reason the options we received in the response didn’t
actually work in Firefox. […] I checked it out on Chrome and it worked just
fine. […] Firefox was freaking out about either order or like literally either
uppercase or lowercase. […] About a month after that started happening
Firefox had resolved the issue.

Yet another was about dblclick events when double tapping a touch screen:

One is the double clicking on a touch screen, like a surface laptop or a
cellphone or a tablet. […] Some platforms, when you double tap the screen
on the same point, it will fire a dblclick event in JS. Some other platforms
will not, on the same hardware with the same code.

See also

● Test262 Report, a dashboard for the ECMAScript conformance test suite
● Babel
● core-js
● polyfill.io

Performance
Performance ranked #3 in feature areas causing issues in the survey. The option
was “Performance (APIs, scrolling, smooth animations)” and some of this may thus
be related to scrolling. Some performance-related issues came up in interviews,
although we did not focus on it. No attempt was made to get a deeper
understanding of these issues for this report, but the quotes may be useful.

https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
https://test262.report/
https://babeljs.io/
https://github.com/zloirock/core-js
https://polyfill.io/

Web developer quotes

From the free-form survey responses:

Different performance bottlenecks across different rendering engines. e.g
clip-path jank in chrome. 2D canvas context compositing performance
differences

Trying to accurately measure performance across browsers when the APIs
for getting RUM data are so different.

From our interviews:

We haven’t released it yet, but there’s a new homepage for our brand that I
was building out. It had some fancy parallax effects and stuff. It was weird
because on iOS on an iPad – it worked fine on mobile – but on iPad
everything was really janky. It turned out after I had chatted with one of the
senior engineers from the design firm that was helping us out, that iOS has
performance issues when trying to animate an element that has text
shadow. Once I removed the text shadow then things were smooth on the
iPad again, which was kind of an oddly annoying thing to fix. I just darkened
the background of the videos a little bit and then it looked OK. That was
something I did not know, I had no idea that text shadow could cause
issues like that on an iPad.

I had mentioned the issue of rendering video to a canvas. It seems that iOS
was a bit more stringent about how much memory a canvas can use. We
ran into some flickering issues on a… I think it was an iPad Pro, an older
12-inch iPad Pro. Because it’s such a large canvas running at a very high
resolution, sometimes the edges would clip as you would scroll. The way
we fixed it is we ended up having just two separate canvases drawing the
same video, and that stopped the flickering. I guess an individual canvas in
iOS is limited to a certain resolution. Yeah, it was an odd thing that I kind of
stumbled into.

Suddenly the animation didn’t… if I start swiping on the other surface, then
the current slide just starts to follow my finger, but not in a natural way like
you would expect from native iOS component. A lot of sliders don’t replicate
the iOS behavior. This time, you just slide, and once you reach a point

where it should move on to the next slide, it just flashes and the next slide
is there. There’s no smooth transition. It’s probably mostly a memory issue
or performance issue. But it’s just annoying to see that something used to
work and doesn’t work any longer.

Since we’re doing a lot of WebGL stuff we have to recommend that
everyone that uses our website uses Firefox, because it is just not
performant on Chrome, sorry. I guess it works, it’s just you can’t really get
up to 60 frames per second, especially with a lot of entities and assets
being deployed. I don’t know if it’s specifically CesiumJS or if it’s my code, I
haven’t done a strict A/B testing. We’ve just seen that Firefox seems to be a
lot more performant. So we definitely recommend Firefox over Chrome, but
Chrome works and, you know, a lot of people use it so we don’t really say
“don’t use it,” we just, if we have a chance we recommend Firefox. For this
specifically, for the algorithms we have to run and for WebGL, I think some
of it is also WebAssembly with CesiumJS specifically, some of the workers
to load in textures, those are a lot more performant on Firefox for some
reason.

Issues with requestAnimationFrame timing also came up in two interviews, see
appendix F.

Forms
In the survey responses, forms ranked #4 for both overall feature areas and
layout/styling features causing issues. For this report we did not look closer at this
area.

Web developer quotes

Some quotes from the survey responses:

Form components do not look and work the same. Styling form components
does not work the same. Especially the more complex components like
range.

most interactive elements (i.e. date inputs, select dropdowns) get styled by
each browser differently and neither of them give you much freedom in
styling.

Safari desktop does not support type="date" on the <input> element on
desktop though Safari iOS has support for this attribute.

Datalist would be a nice autocomplete, if everyone did it like FF, allowing for
key/description search.

In one interview, we asked about issues with forms:

Not in logic, but in the layout. It’s always been a pain for me making decent
layout among all the browsers, or better, among all new and legacy
browser. Because with Firefox and Chrome there is not much trouble in
hiding the generic selectors, default selector, etc., But when it’s time to do
the same on Internet Explorer […] it’s still a pain.

Just today I was trying to inject a background in a <select> box, in the
options I had some car brand’s names and wanted to set a background with
the logo of the brand. I could not do that, if not using a wrapper, a fake
<option>, because it cannot be done in an <option>. I think there’s space
for evolving the layout for the forms, select boxes, input and scrollbars on
Firefox.

Browsers
The primary audience for this report is browser vendors. Unlike with the findings
for features, where we have sometimes dug deep to explain the results, for
specific browsers we have sought to avoid interpretation or explanation, and to
instead relay the survey results as directly as possible. This is to allow each
browser vendor, who are the premiere experts on their own browser, to do their
own analysis and take what value they can from this report.

Quotes from the interviews are not repeated here, as many examples have
already appeared in the findings for features, and all of them can be found in the
interview transcripts.

Chrome
In browsers/platforms causing issues, 12% and 11% chose Chrome on desktop and
mobile respectively, with up to 3 choices per survey respondent.

Web developer quotes

A sample of the 86 free-form survey responses relating to Chrome:

Chrome and Firefox are starting to diverge, with chrome adding features
before they're fully standardized. As the dominant browser, some pages are
being written to only work in chrome now.

Browser compatibility is mostly OK. However the need to keep people from
overusing Chrome only feature is a pain point. While this pain point can be
solved by company policy, it should not have to be. Google should be more
focused on the standardization process and stop forcing its way through
for features that are often not ready or half baked.

Many APIs are Chrome-only and will never show up in other browsers

I don't like that Google pushes new things, seemingly without discussing it
with other browser vendors and then all hipsters want to use it (regardless
whether it's really useful), but it only works in Chrome and so all other
browsers seem to be technically behind.

Browsers picking specific parts of CSS specs to implement. And especially
Chrome implementing non-standard things ahead of completion for the
actual spec. It fragments the web.

Edge
In browsers/platforms causing issues, 21% and 8% chose Edge on desktop and
mobile respectively, with up to 3 choices per survey respondent.

Web developer quotes

A sample of the 42 free-form survey responses relating to Edge:

EDGE browser

MS Edge (non-Chrome version)

Testing the pre-Chromium Edge, as it's Windows-only and I use a Mac

Still having to support MS IE 11 and non-Chromium MS Edge

From IE11 to Edge 15.

Internet Explorer
In browsers/platforms causing issues, 70% chose Internet Explorer, with up to 3
choices per survey respondent.

We also looked at the survey results when excluding people who reported issues
with Internet Explorer, see appendix D, Flexbox in Internet Explorer and Grid in
Internet Explorer.

Web developer quotes

A sample of the 348 free-form survey responses relating to Internet Explorer:

Having to support Internet Explorer is my top pain point. Our customers are
stuck on old software they cannot easily update.

Internet Explorer - Its bugs, rendering, lack of support for new tech. Many
of our customers lock their users down to IE11. This prevents us from using
flexbox (buggy), CSS grids (missing), Service Workers (no support), etc.

IE 11, which is still the default internal browser for my organization. So it
must be fully supported, meaning if we can't make something work at near
100% parity in IE, we can't do it.

Support for old browser (IE 11 most of the time)

IE11. I bet 99% of people say that.

Firefox
In browsers/platforms causing issues, 12% and 7% chose Firefox on desktop and
mobile respectively, with up to 3 choices per survey respondent.

Web developer quotes

A sample of the 46 free-form survey responses relating to Firefox:

Sometimes I have problems with Firefox

Firefox and Safari lagging behind Chrome.

Sometimes Web API works in Chrome but not in Firefox or Safari. […] E.g,
Web Share API works in Chrome and Safari but not in Firefox, Preload works
in Chrome and Safari but not in Firefox.

The completely different handling of :focus by Firefox. Where (almost)
every browsers gives focus to an anchor, for Firefox you have to use
:target.

Blur filter (css) in firefox has performance issues.

Safari
In browsers/platforms causing issues, 50% and 46% chose Safari on desktop and
mobile respectively, with up to 3 choices per survey respondent.

Web developer quotes

A sample of the 229 free-form survey responses relating to Safari:

Safari/WebKit lagging behind in implementing standards. Not just Chromium
flights of fancy, but basic, super useful stuff like MediaRecorder.

Browser vendors choosing to just not implement parts of specifications. I
have three examples of this: 1) Safari desktop does not support type="date"
on the < input> element on desktop though Safari iOS has support for this
attribute. 2) Safari has decided to not implement autonomous custom
elements 3) Safari does not support the Web Push API making PWAs
unattractive on a major mobile platform

Safari, particularly the iOS version.

New feature adoption speed, e.g. WebP is adopted well apart from Safari
and Safari iOS, could anything be done to introduce such things faster?

Safari lagging behind and not really supporting PWAs.

One interview participant followed up on email on a specific issue they had
encountered:

I found a little function that is called isApple() - designed expressly to run
before any calls to the "screen" object, because even though said object
has been around for years, it turns out JavaScript just breaks in
unpredictable ways if you call into screen properties that don't play nice
with either Safari (or iOS).

After investigating, a CSSOM View spec bug was filed for this: should
screen.width and screen.height reflect orientation?

https://github.com/w3c/csswg-drafts/issues/5204
https://github.com/w3c/csswg-drafts/issues/5204

Samsung Internet
Samsung Internet was not included as a predefined option in browsers/platforms
causing issues, but was named 4 times as the free-form “Other” choice.

Web developer quotes

Some free-form survey responses relating to Samsung Internet:

IE11. Worrying that Edge, or maybe Samsung or some other will get enough
market, but deviate or (more probable) stagnate and not implement new
standard APIs. Always waiting for new APIs to spread.

People still using Internet Explorer. Existence of niche browsers like
Samsung or UCBrowser.

From one of our interviews:

The safe areas on iPhone X, that’s another thing you have to take in. There’s
not much specification around that, it’s just vendors doing their own things,
adding their own overlays. I think Samsung Internet also has their own
overlays at the bottom and you don’t really have access to get information
about how much space they take in, so you can move your interface around
them.

Samsung Internet was also mentioned in two other interviews in parts that weren’t
transcribed verbatim. These are the non-verbatim notes taken:

Samsung Internet [is] a bit problematic. Since we’re just getting off the
ground we haven’t seen a lot of usage. We have basic analytics, but not
data coming in now due to the current crisis. I need to order a Samsung
device, or maybe run it in the emulator. I’ve heard there are issues because
it tends to not get updated as much.

Supporting everything with >1% market is the goal, although Samsung
mobile has gotten more traction lately, but it’s hard to test everything,
haven’t taken a close look at that.

Other Themes
A few themes are cross-cutting, and don’t pertain to any specific feature or
browser.

Access to devices
Not having access to devices for testing came up both in the survey responses
and in our interviews.

Web developer quotes

In the survey’s free-form comments, there were several comments about testing
and not having access to the necessary hardware:

How difficult it is to test in multiple browser/os combinations, without
investing in a suite of expensive devices and/or cloud services.

Testing the pre-Chromium Edge, as it's Windows-only and I use a Mac

Having a way to test in all browsers. Setting up a test infrastructure (e.g.
Selenium) on all browsers and platforms. (Selenium on MacOS Safari isn't
easy when your app doesn't run on MacOS)

This also came up in interviews. One participant explained that they don’t test in
Android because they don’t have the devices for it:

On mobile we don’t test on Android most of the time because we don’t
have a device lab at hand, so we just hope for the best to be honest.
Because I have iOS devices I don’t want to buy additional things that are
just catching dust all the time, and spend a couple of hundred bucks or
maybe ever more just to get a decent range of Android devices. […] it’s
Blink working behind the scenes, we mostly rely on that. Especially on
smaller projects it’s mostly an issue of timing and budget, so I use what I
have at hand. I can also run a simulator on my computer. […] Maybe I can
get hold of an old Android phone someday, but then we still have the
problem that I probably can’t run a current version of the operating system.

There were also two interview participants who said they didn’t have the
hardware for testing Safari. (Not transcribed.)

Breaking changes
Although breaking changes, or regressions, was not among the overall top pain
points, and are not always cross-browser compatibility issues, we have clear
feedback from the survey and interviews worth highlighting.

Note for web developers: How to file a good browser bug is a good resource for
how to report that a regression has happened. If the problem is reported early, the
chances of the change being reverted are better.

Web developer quotes

In the survey’s free-form comments, there were several comments about testing
and not having access to the necessary hardware:

Breaking changes are not uncommon. Particularly for Chrome, where
unannounced behavior changes are often introduced.

Frequent browser updates (especially Chrome / Firefox) that potentially
change browser behaviour.

Chrome changes (including mDNS with WebRTC) quietly

Things that used to work suddenly stop because of browser updates. This
unstability places an unfair maintenance burden on the developers, wasting
time and money.

Bugs introduced by browsers (so, a feature that was working fine now
doesn't work) that takes ages to get fixed again.

One interview participant also told us about seeming regression in iOS 13:

In our CMS we have input fields using CodeMirror […] with iOS 13 there
have been a lot of changes, under the hood, probably. Because cursor
placement, copying and pasting inside of CodeMirror no longer works
reliably. Text selection is broken. I don’t know if it’s a CSS issue on our side,
but my guess is it’s mostly related to something in iOS that’s changed. […]

https://web.dev/how-to-file-a-good-bug/
https://codemirror.net/

Also annoying, let me give you an example for another project. We were
using a pretty popular JavaScript carousel called Glide.js. With iOS 13 they
changed something and now scrolling works like garbage on iOS, especially
on older devices such as an iPhone SE or older iPads. All the animations are
broken and it doesn’t feel natural if you’re swiping through this gallery. Now
I’ve used this in 5 or 6 projects, and something that used to work fine is now
broken.

https://glidejs.com/

Ongoing Work
Browser compatibility has been an issue for the entire history of the World Wide
Web, and we do not expect to be able to fix it entirely. Nevertheless, the purpose
of this report is to highlight specific issues which are concrete enough for browser
vendors to prioritize. In conversation with the engineering teams, these are the
efforts we know of at the time of publishing.

Improving Chromium's browser compatibility in 2020 outlines various efforts
happening in the Chromium project, some of which is repeated below.

CSS Flexbox & Grid
CSS Flexbox and CSS Grid emerged as two of the features causing the most
issues in this research. As described in the blog post, improvements to both are in
progress in Chromium, and notably flex-gap and fieldset+flex support shipped in
Chrome 84 in July. In WebKit, Igalia have been contributing a lot of Flexbox fixes,
specifically around height and aspect ratio.

Microsoft Edge
The issues identified with Microsoft Edge in this survey, which was conducted in
February/March 2020, were specifically for EdgeHTML in Microsoft Edge Legacy.
It will reach end of life on March 9, 2021, and as of June 2020, the new
Chromium-based Edge is rolling out with Windows updates to Windows 10 (see
blog post) as well as Windows 7 and 8.1, and is available on other platforms like
macOS and Linux. Therefore, we expect a natural phasing out of these particular
issues for developers.

Browser Compatibility Data
To help developers better understand which features will work where, accurate
and up-to-date compat data is key. Such data can also help browser vendors get
an overview of the state of browser compatibility and what needs to be
addressed to offer the best possible platform for developers.

https://blog.chromium.org/2020/06/improving-chromiums-browser.html
https://blog.chromium.org/2020/06/improving-chromiums-browser.html
https://crbug.com/762679
http://crbug.com/375693
https://www.igalia.com/
https://bugs.webkit.org/buglist.cgi?bug_status=RESOLVED&chfield=resolution&chfieldto=Now&email1=svillar%40igalia.com&emailassigned_to1=1&emailtype1=equals&f1=creation_ts&f2=creation_ts&list_id=6434869&o1=greaterthaneq&o2=lessthaneq&query_format=advanced&resolution=FIXED&short_desc=flex%20flexbox&short_desc_type=anywordssubstr&v1=2020-05-01&v2=2020-09-15
https://techcommunity.microsoft.com/t5/microsoft-365-blog/microsoft-365-apps-say-farewell-to-internet-explorer-11-and/ba-p/1591666
https://support.microsoft.com/en-us/help/4541302/the-new-microsoft-edge-is-available
https://blogs.windows.com/windowsexperience/2020/06/16/whats-next-for-windows-10-updates/
https://support.microsoft.com/en-us/help/4567409/update-for-the-new-microsoft-edge

There is ongoing commitment from browser vendors to invest in MDN’s Browser
Compatibility Data, increasing its scope and quality. This data is also being used in
a number of projects such as VS Code, caniuse.com, webhint.io and many more.

https://github.com/mdn/browser-compat-data/issues/3555
https://developer.mozilla.org/en-US/docs/MDN/Contribute/Structures/Compatibility_tables
https://developer.mozilla.org/en-US/docs/MDN/Contribute/Structures/Compatibility_tables
https://code.visualstudio.com/
https://caniuse.com/
https://webhint.io/docs/user-guide/hints/hint-compat-api/
https://github.com/mdn/browser-compat-data#projects-using-the-data

Acknowledgments
The survey and interviews were designed and conducted together with a detailed
analysis by Philip Jägenstedt (Google), Robert Nyman (Google) and Kadir Topal
(Mozilla).

We would like to thank the MDN Product Advisory Board members for reviewing
the survey design and/or this report: Chris Mills (Mozilla), Daniel Appelquist
(Samsung), Dominique Hazaël-Massieux (W3C), Joe Medley (Google), Jory
Burson (Bocoup), Kyle Pflug (Microsoft), and Reeza Ali (Microsoft).

A special thank you to these individuals who provided feedback on the survey
design and/or this report: Adam Stevenson (Mozilla), Chris Harrelson (Google),
Chris Mills (Mozilla), David Bokan (Google), Harald Kirschner (Mozilla), Hwi Kyoung
Lee (Google), Ian Kilpatrick (Google), James Graham (Mozilla), Justin Toupin
(Google), Karl Dubost (Mozilla), Mike Taylor (Mozilla), Paul Kinlan (Google), Philip
Rogers (Google), Richard Smith (Google), and Stephen McGruer (Google).

Finally, a huge thank you to our anonymous interview participants, who were
generous with their time and helped us get a clearer picture of browser
compatibility issues.

This report was written by Philip Jägenstedt and Robert Nyman.

Appendix A: Survey Design
The complete survey design follows. Note that the screener questions (1 and 2)
are the same as in the 2019 MDN DNA survey, in order to get a similar audience.
Question 3 is also taken verbatim from the 2019 MDN DNA survey.

Goal
(what we want
to know and
why)

Survey Question
(actual questions in survey questionnaire)

Output
(what will we do with the
data)

Web developers and designers, we want to hear from you!

We know from past surveys that browser compatibility is a very common pain point, and
we would like to get a better understanding of these pain points. This survey will take
you approximately 10 minutes, and the results and learnings will be shared publicly.

Common Questions

Screener
question, filter
out people
who do not
work on the
web.

1) In regards to web applications or web
pages do you:

● Code
● Design and code
● None of the above (concludes their

response, end of survey)

[Intended for Screening]

Prevent people who are
not the target audience
from taking the survey.

Screener
question, filter
out people
who do not
code.

2) How many hours during a typical week
do you spend writing, reviewing, testing, or
debugging code?

● 0 hours of coding (concludes their
response, end of survey)

● Between 1 - 4 hours of coding
● Between 5 - 10 hours of coding
● Between 11-20 hours of coding
● More than 20 hours of coding

[Intended for Screening]

Prevent people who are
not the target audience
from taking the survey.

Leading
indicator
question.

3) How would you rate your overall
satisfaction with the Web, as a platform and
set of tools, to enable you to build what you
need or want?

● Strongly Satisfied
● Satisfied
● Neither Satisfied nor Dissatisfied
● Dissatisfied

Use this as a metric to
measure over time to see
if people are becoming
more or less happy with
the web.

● Strongly Dissatisfied

Browser Compatibility

Are web devs
more or less
satisfied with
compat than
overall?
Hypothesis:
much less
satisfied.

4) Based on your experience developing for
the web, how satisfied or dissatisfied are
you with browser compatibility?

5-point satisfaction scale.

If devs already claim to be
satisfied that’s surprising,
ask in interviews if there’s
something more
frustrating.

Repeat this compat
satisfaction question over
time to see if our efforts
are working.

What is top of
mind with
compat?

5) Overall, what is your top pain point with
browser compatibility?

[open text field]

Identify the top compat
pain points to focus on in
the interviews.

Where are the
biggest pain
points at a
high level?
Hypothesis is
the first two.

6) What are the biggest pain points for you
when it comes to browser compatibility?
Select up to 3.
❏ Lack of browser support for a given

feature
❏ Differences between browsers for a

given feature
❏ Knowing what browsers support a

given feature
❏ Managing polyfills
❏ Managing workarounds for browser

bugs
❏ Getting equivalent performance
❏ Dealing with prefixes
❏ Other: …

Nothing if the hypothesis
is confirmed. If falsified,
focus on the surprising
aspect in interviews.

If “knowing” is at the top
we prioritize compat data
and its use in products.

If prefixes are at the top
we prioritize unprefixing
in all engines.

Which specific
features that
can be
improved by
specific teams
are the
biggest
source of
frustration?

7) What feature areas cause the most
issues with browser compatibility? Select
up to 3.
❏ Accessibility
❏ Animations
❏ Device access (camera, sensors,

etc.)
❏ DOM APIs (modifying elements,

editing, selection, etc.)
❏ Fonts
❏ Forms (autocomplete, styling, etc.)

Focus on the most
selected areas in
follow-up interviews.

Expected top area is
layout.

https://github.com/mdn/browser-compat-data/

❏ Graphics (<canvas>, SVG, WebGL,
WebXR)

❏ Images (responsive images, formats)
❏ Input (keyboard, mouse, touch, etc.)
❏ Installable web apps (installation,

notifications, etc.)
❏ JavaScript (core language)
❏ Layout and styling (CSS, responsive

layout, etc.)
❏ Media playback (<audio>, <video>,

Web Audio, formats, etc.)
❏ Network (fetch, XMLHttpRequest,

WebSockets, etc.)
❏ Offline support (service workers,

etc.)
❏ Payments
❏ Performance (APIs, scrolling, smooth

animations)
❏ Real-time communication (WebRTC)
❏ Security (HTTP headers, etc.)
❏ Storage (cookies, IndexedDB,

localStorage, etc.)
❏ WebAssembly
❏ Web Components (shadow DOM,

custom elements)
❏ Workers
❏ Other: …

Get a more
detailed
understanding
of layout.
Shown
conditionally
based on
above.

8) What layout or styling features cause the
most issues with browser compatibility?
Select up to 3.

❏ Backgrounds and borders
❏ CSS box model
❏ Flexbox
❏ Form elements
❏ Grid layout
❏ Multi-column layout
❏ Responsive layout
❏ Scrolling
❏ Tables
❏ Text layout/styling
❏ Transforms
❏ Other: …

As above.

“CSS box model” is a bit
of a catch-all for
difficulties with getting
things in the right place or
of the right size. If it's
chosen a lot, we’ll need to
dig deeper in interviews.

Improve our
understanding

9) What browsers/platforms cause you the
most issues with compatibility? Select up to

We expect the most
selected is IE.

from the
original
survey, where
people were
asked to rank
the browsers
they
supported.

3.
❏ Chrome on desktop
❏ Chrome on mobile
❏ Edge on desktop
❏ Edge on mobile
❏ Internet Explorer (desktop only)
❏ Firefox on desktop
❏ Firefox on mobile
❏ Safari on desktop
❏ Safari on mobile
❏ Other: …

Focus on the second
most selected in
interviews to find out if
there’s a theme for that
browser’s team to focus
on.

Conclusion

Understand if
people are
willing to be
contacted
further.

You completed the survey, thank you for
your contributions.

May we contact you if we have any further
questions?

[open text field for email]

Recruiting list for
follow-up interviews.

Appendix B: Top Pain Point Categories
As described in categorizing responses, free-form responses were categorized
manually into 46 categories, up to 5 categories per answer. These categories
were further combined into 12 larger groups. The following table shows the
categories and examples of the responses.

Group Category Count Examples

Other Accessibility 15 - Built-in screen readers
- Inconsistent UX between browsers/screen

reader combinations
- Accessibility. Browsers are not consistent,

frequently don't follow standards, have too
many bugs, etc.

Other Android 9 - Having to support old legacy browsers,
such as Android 4.4 or IE 11

- Chrome android 7
- Legacy browsers/old platforms

(iOS/Android)

Other Animations 7 - Speed of animations on browser
- Performant geometry animations (width,

height, etc.)
- CSS standard being bent and disrespected,

CSS animations to be precise

Other APIs 38 - API availability
- non standardized API's
- Inconsistent implementations of 'standard'

APIs.

Other Breaking
changes

8 - Breaking changes are not uncommon.
Particularly for Chrome, where
unannounced behavior changes are often
introduced.

- Frequent browser updates (especially
Chrome / Firefox) that potentially change
browser behaviour.

- Things that used to work suddenly stop
because of browser updates. This

instability places an unfair maintenance
burden on the developers, wasting time and
money.

Chrome Chrome 86 - Chrome and Firefox are starting to diverge,
with chrome adding features before they're
fully standardized. As the dominant
browser, some pages are being written to
only work in chrome now.

- Google releasing features in Chrome with
no developer or standards committee
backing. And later deprecating them
without any alternatives.

- Inconsistent support for standards with
some having been around for ages like
dialog Chromes developing attitude
reminiscent of the bad old days of IE setting
own standards.

Layout &
styling

CSS 158 - CSS. There is just always issues with CSS
- Browsers that have behaviours different

from the standard, or bugs, specially in CSS
(Safari, I'm looking at you).

- Firefox doesn't handle column layout
properly, and will only draw it inside a flex
container on page refresh.

Edge Edge 42 - MS Edge (non-Chrome version)
- Still having to support MS IE 11 and

non-Chromium MS Edge
- From IE11 to Edge 15.

Other Events 16 - On one app I have differences between ff
and WebKit on mouse event handling and
have to support a different design on
Firefox because blurs don't work as
expected on ff

- input specific javascript events like
mousewheel

- https://stackoverflow.com/questions/59751
598/inputevent-datatransfer-is-always-null

Other Extensions 7 - Web Extension API differences between

Chrome and Firefox.
- extensions aren't available on Android.
- The switch to Firefox Quantum caused a

substantial number of users to freeze on
Firefox 52 because their extensions broke
in newer versions.

Firefox Firefox 46 - Firefox and Safari lagging behind Chrome.
- The completely different handling of :focus

by Firefox. Where (almost) every browsers
gives focus to an anchor, for Firefox you
have to use :target.

- Firefox doesn't handle column layout
properly, and will only draw it inside a flex
container on page refresh.

Layout &
styling

Flexbox 39 - Flexbox bugs in all major browsers except
for the old EdgeHTML version of Edge

- I don't really like that chrome and firefox
handles images inside flexbox differently

- flex-gap, make it happen Chrome.

Other Fonts 11 - Fonts and some CSS elements. They
display differently on different browsers.

- Fonts and some behavior is browser
restricted. This is a major pain point.

- Inconsistencies in rendering. For example,
font baseline alignment, non-support of
newer features (e.g. backdrop-filter) in
some browsers.

Layout &
styling

Forms 29 - Form components do not look and work the
same. Styling form components does not
work the same. Especially the more
complex components like range.

- most interactive elements (i.e. date inputs,
select dropdowns) get styled by each
browser differently and neither of them give
you much freedom in styling.

- The native form controls look different
across browsers. I would prefer if they had
a more uniform design.

General General 142 - Lack of consistency between browsers
- browser differences that can't be

feature-detected
- differences in un-spec-ed behavior

Other Graphics 5 - Lack of browser support for features, e.g.
ResizeObserver, createImageBitmap,
WebGL2, WebAssembly worker-based
threads.

- Different performance bottlenecks across
different rendering engines. e.g clip-path
jank in chrome. 2D canvas context
compositing performance differences

- Safari handling webgl differently than
firefox/chrome.

Layout &
styling

Grid 23 - Waiting for CSS specs to be fully available
every where. Mainly css grid.

- CSS Grid bugs and mobile viewport
behaviour.

- layout, e.g. css grid and css flex missing
from older browsers

Other HTML 12 - Having basic HTML5 features not
supported in all web browsers.

- using the latest HTML 5 attributes and
modern API's

- different implementations of same tag or
element property with spacing/sizes in
different browsers

Internet
Explorer

Internet
Explorer

348 - Having to support Internet Explorer is my
top pain point. Our customers are stuck on
old software they cannot easily update.

- IE 11, which is still the default internal
browser for my organization. So it must be
fully supported, meaning if we can't make
something work at near 100% parity in IE,
we can't do it.

- Support for old browser (IE 11 most of the
time)

Safari iOS 27 - Safari, particularly the iOS version.

- Having to test in every single browser. Not
being able to rely on iOS behaving the same
way as its counterparts.

- iOS usually causes the most issues at this
point. Safari and Chrome on iOS can be
modern in some ways, but outdated in
others

JavaScript JavaScript 78 - Varying JavaScript implementations that
differ from browser to browser.

- The javascript part, I know if I use webpack
and babel it could save my problem. But
native support is always what i looking for.

- Running code through transpilers often
means that code is bloated and large file
sizes

Other Knowing 25 - Knowing when we can start to use newer
browser APIs.

- Not knowing the little nuances of things
that are different, or which newer web
specs aren't yet fully supported on some
browser or another.

- Discovering the lowest common
denominator. caniuse.com is the best
resource thus far.

Other Media 23 - Multimedia - using audio/video tags isn't
always consistent among browsers.
Specifically I run into issues when src
attribute was set dynamically (it was Safari I
believe).

- Audio files - there should be one format for
every browser

- lack of consensus vendor support for some
APIs, e.g. web speech api

Other Mobile 34 - Mobile testing, because:
- Responsive mode on desktops

doesn't always emulate mobile
perfectly

- Debugging on mobile, even through
possible, is not plug'n'play

- I don't own an iOS device, nor OSX
- I feel like there is more browsers to

tests
- Hardware access on mobile devices. Like

Audio and Bluetooth Devices. Share Api and
Push Notifications

- Mobile browsers feature parity

Other Network 8 - different loading order between browsers
- Assets loading and loading events

implementation
- Interpretation of cache control

None None 55 - It is fairly rare that I see browser
compatibility issues.

- I don't feel that browser compatibility is an
issue anymore

- Its fine!

Old
browsers

Old
browsers

103 - Having to support old legacy browsers,
such as Android 4.4 or IE 11

- Support for old browser (IE 11 most of the
time)

- Old browsers, e.g. Internet explorer and
older versions of Safari.

Other Other 69 - interaction with built-in os features
- lack of business clarity about who we

support
- need of third party libraries

Other Performance 36 - Inconsistent performance.
- a lot of memory consumption
- Different performance bottlenecks across

different rendering engines. e.g clip-path
jank in chrome. 2D canvas context
compositing performance differences

- Trying to accurately measure performance
across browsers when the APIs for getting
RUM data are so different.

Other Polyfills 36 - Polyfilling or avoiding modern JavaScript
features in browsers that don't support

them.
- Too many polyfills is confusing
- Supporting old browsers with tons of

polyfills

Other Prefixes 21 - When we have to differentiate every css
prop for specific browser

- the css vendors prefix are a pain. the same
js prefixes are more easy to handle as they
can be dynamically "renamed"

- Vendor prefixed features and support of
new features

PWAs PWAs 43 - Lack of PWA support, especially on iOS
- Full support of the PWA set of technologies

between all major browsers.
- Cutting edge features that try to implement

native mobile app functionality move too
slow and are unevenly supported

Layout &
styling

Rendering 69 - Biggest issue is the small layout differences
between render engines.

- Unexpected behaviors with positioning.
- When I hear from a client that what they're

seeing is not what I'm seeing.

Safari Safari 229 - iOS safari is slow to adopt most features,
especially PWA features

- webp image format support for safari
- Bugs and missing features in WebKit.

Layout &
styling

Scrollbars 10 - How scroll bars affect layout
- Inability to style browser scrollbars
- Scrollbar bugs and inconsistent behavior

between browsers regarding scrollbars.
Layout calculations, async issues. It's not
just that these are incredibly annoying to
determine and debug, it's that they differ
per browser and finally it feels like nobody
else on the internet talks about these issues
even though I'm sure everyone has them.

Other Scrolling 14 - Controlling scroll behavior: when does a

touch lead to a scroll? Is it cancelable? […]
Does resize fire for browser elements
appearing and disappearing? When does it
fire?

- content behind dialog scrolls in safari - no
easy way to disable this "feature"

- CONTROL OVER HOW PARTS OF THE PAGE
SHOULD BEHAVE WHEN SCROLLING

Other Security 23 - the new SameSite setting for cookies that
will break some browsers no matter what
you do and you have to resort to browser
sniffing

- CORS & same site cookies
- Different security defaults causing some

resources to no load at all sometimes.

Other Single-
browser
features

19 - Some features land on only one browser
first, and then never implement by other
browser, and in the end, the feature is
abandoned by all browser…

- Google Chrome only features
- Supporting legacy browsers,

browser-exclusive features

Slow
adoption

Slow
adoption

48 - Waiting for all browser vendors to
implement a new feature

- Late adoption of new features or no
adoption at all.

- when it takes too long for cool things like
grid, etc to become 95%+ compatibility

Other SVG 8 - Lately it is mainly SVG. I like SMIL. And with
better support from all browser we could
easily use self contained SVG with all the
necessary animations. Better for icons and
infographics.

- SVG features and implementations.
- Rich experiences involving video and SVG

Other Testing 25 - How difficult it is to test in multiple
browser/os combinations, without investing
in a suite of expensive devices and/or cloud

services.
- It's hard to test in all required browsers in a

comfortable way (with possibility to interact
with the website, debug problems etc.),
especially mobile browsers.

- Reliable cross-browser test infrastructure.
We no longer test on Firefox due to the cost
of keeping it alive. Mozilla would do well to
offer cloud infra for Firefox testing.

Other Tools 21 - Conditional Transpiling. Maintaining
different bundles for different browser
types. Graceful degradation of CSS at scale

- The Complexity of the Toolchains that are
supposed to help coping with browser
compatibility.

- Managing the various tools (webpack,
babel, etc.) that manage the various
polyfills and prefixes required for good
compatibility

Other Viewport 6 - Inconveniences in the viewport: is the URL
bar part of 100vh?

- Mobile browser compatibility regardless to
when I'm trying to set the web page height
to 100% (or flex stretch, or via JavaScript
window.innerHeight). This is because of
browsers top/bottom native UI bars
inconsistency (which appear/disappear on
scrolling).

- The treatment of viewport units, especially
on mobile devices. For desktop: 100vw
includes vertical scrollbar width, therefore
nigh unusable esp. for windows because it
causes hor. scrollbar (often not recognized
by developers on macs) For mobile:
treatment of 100vh and browser GUI is a
PITA.

Other Web
Components

10 - Lack of cross-browser support for custom
built-in elements.

- Inability to polyfill something like web
component on IE10

- accessibility shadow dom

Other WebP 16 - webp image format support for safari
- Lack of cross-browser support for next-gen

image file formats (JPEG 2000, JPEG XR,
and WebP).

- New feature adoption speed, e.g. WebP is
adopted well apart from Safari and Safari
iOS, could anything be done to introduce
such things faster?

Other WebRTC 8 - Webrtc most in mobile platforms
- Chrome changes (including mDNS with

WebRTC) quietly
- Webcam management, webnfc

Appendix C: Survey Results
A results spreadsheet contains the 3,236 complete responses further filtered to
the 1,429 responses where a valid answer was given to the survey’s main
free-form question. The results can also be filtered by other criteria.

https://docs.google.com/spreadsheets/d/1zJtJFLlz2XXqrl9-ay1CQ89Hooh4NjxSXnjF7g2VZNw/edit#gid=68627928&fvid=2096072298

 1. In regards to web applications or web pages do you:

This was a screening question where the option “None of the above” (not shown)
ended the survey.

 2. How many hours during a typical week do you spend writing, reviewing,
testing, or debugging code?

This was a screening question where the option “0 hours of coding” (not shown)
ended the survey.

 3. How would you rate your overall satisfaction with the Web, as a platform and
set of tools, to enable you to build what you need or want?

74.8% are satisfied or very satisfied, 25.2% are less than satisfied. This is very
close to the results from the 2019 MDN DNA survey. The purpose of this question
was to contrast it to the following.

https://mdn-web-dna.s3-us-west-2.amazonaws.com/MDN-Web-DNA-Report-2019.pdf

 4. Based on your experience developing for the web, how satisfied or
dissatisfied are you with browser compatibility?

As expected, web developers are not at all satisfied with compat, with 30% being
dissatisfied or very dissatisfied, compared to 9% for the web overall in the
previous question.

 5. Overall, what is your top pain point with browser compatibility?

This was a free-form text question to capture what is top of mind for web
developers. No limit could be placed on the number of issues mentioned, and the
maximum number of categories assigned to a single response was 5. For the
purpose of visualization, the 46 categories were merged into 12 groups, see the
spreadsheet for details.

The most straightforward way to visualize the results is as the percentage of
1,429 valid responses that mentioned each of the groups:

With up to 5 categories per response, the sum exceeds 100%.

https://docs.google.com/spreadsheets/d/1zJtJFLlz2XXqrl9-ay1CQ89Hooh4NjxSXnjF7g2VZNw/edit#gid=643525860
https://docs.google.com/spreadsheets/d/1zJtJFLlz2XXqrl9-ay1CQ89Hooh4NjxSXnjF7g2VZNw/edit#gid=643525860

As described above, care was taken to identify a primary category for each
response, allowing for a visualization of the single top pain point:

Notably, the order of pain points is roughly preserved. The large “other” slice is
the long tail of issues that didn’t fit into any of these categories, each occurring in
≤2.5% of responses.

 6. What are the biggest pain points for you when it comes to browser
compatibility?

 7. What feature areas cause the most issues with browser compatibility?

 8. What layout or styling features cause the most issues with browser
compatibility?

This question was only shown if “Layout and styling” was selected in question 7.
In the following graph the total number of responses is 685.

 9. What browsers/platforms cause you the most issues with compatibility?

Appendix D: Survey Results Excluding IE
Because Internet Explorer was a top issue we suspected that the results around
feature areas would be biased a lot towards what is a problem in IE. Also, IE will
never change and will eventually become unsupported and unused, so it makes
sense to ask how things would look if IE wasn’t around. To get a sense for this, we
look at the 415 responses that didn’t mention IE in 5 or select it in question 9. This
should be compared against the 1,429 responses in the main survey results.

https://docs.google.com/spreadsheets/d/1zJtJFLlz2XXqrl9-ay1CQ89Hooh4NjxSXnjF7g2VZNw/edit#gid=68627928&fvid=1418402615

 1. In regards to web applications or web pages do you:

 2. How many hours during a typical week do you spend writing, reviewing,
testing, or debugging code?

 3. How would you rate your overall satisfaction with the Web, as a platform and
set of tools, to enable you to build what you need or want?

4. Based on your experience developing for the web, how satisfied or
dissatisfied are you with browser compatibility?

5. Overall, what is your top pain point with browser compatibility?

This was not analyzed in the “excluding IE” subset as it would have required extra
effort due to how the results for this are structured in the spreadsheet.

 6. What are the biggest pain points for you when it comes to browser
compatibility?

 7. What feature areas cause the most issues with browser compatibility?

 8. What layout or styling features cause the most issues with browser
compatibility?

This question was only shown if “Layout and styling” was selected in question 7.
In the following graph the total number of responses is 141, compared to 685
overall.

1. 30% Responsive layout (up from #3)
30% Scrolling (up from #5)
These options were tied exactly at 43 responses.

3. 28% Flexbox (down from #1)
4. 26% Form elements (unchanged rank)
5. 24% Text layout/styling (up from #6)
6. 19% Grid layout (down from #2)

 9. What browsers/platforms cause you the most issues with compatibility?

Appendix E: Interview Study

Study Goals
Our goals for the interview study were:

● Learn about a few concrete problems people have with responsive layout
and scrolling.

○ Expectation: The clearest theme from the free-form survey response
was dealing with the dynamic viewport size: viewport units, URL bar
and virtual keyboard. Is that top of mind for everyone, or just those
few who wrote about this?

● Understand the rough shape of compat pain around “JavaScript”, which
was feature area #2 in the survey.

○ Do people mean the JS language or DOM APIs or Web APIs?
○ Is JS still a problem if you use tools like Babel?
○ Should we work on tooling to work around the issues or work on the

core JS language?

Deprioritized goals:

● For CSS Flexbox and Grid, does IE specifically cause most pain, or are these
problematic also in recent Chrome/Firefox/Safari?

○ Expectation: They are problematic even when discounting IE,
especially Flexbox.

● For IE and Safari, is the problem mostly missing features and bugs, or is it
the difficulty of testing these browsers?

○ Expectation: IE is so different that great testing wouldn’t help, but for
Safari the inability to test without Apple hardware is a bigger part of
the problem itself.

Discussion Guide
This is an abbreviated version of the discussion guide used for the interviews.

Introductory Questions

● Can you tell us a little bit about yourself?
○ Hometown?

○ Profession? What size/type of company?
○ How long have you been programming?

● Can you tell us a bit about what kinds of websites or webapps you build?
○ Desktop, mobile or both?
○ Which browsers?

Browser compatibility

● JavaScript
○ When was the last time you had a compat issue with JavaScript?

How did you deal with it?
○ [If they use tools like Babel, why is JS still a compat problem?]
○ [If they don’t, why not? What do they do instead?]
○ Is any browser particularly problematic for JavaScript compat?
○ Many people have said that JS core is a problem in our survey, can

you think of why that might be?
● Responsive layout

○ Do you build for both desktop and mobile? [If not already known.]
○ Can you recall the last time you had trouble making a design work

well on both desktop and mobile devices? What was it and what did
you do?

● Scrolling
○ [Possibly prompted from the previous topic, otherwise skip.]
○ Scrolling is something that almost all websites and webapps need to

do. Have you ever had difficulties getting scrolling to work as you
wanted? How did you deal with it?

Browser compatibility (deprioritized section)

● Safari
○ Do you support Safari?

■ Are there missing features or bugs? Which features/bugs?
■ To what extent are missing features in Safari an issue for

PWAs?
○ How do you test in Safari?

■ If not at all, is it because you have no access to needed
hardware?

● Internet Explorer
○ Do you support IE?

■ Why do you need to support IE? Why do your users still use IE?

■ When was the last time you had to do something special to
support IE? What did you do?

■ When was the last time you couldn’t use a feature because of
IE? What did you do?

● CSS Flexbox
○ When was the last time you had a compat issue with CSS Flexbox?

How did you deal with it?
● CSS Grid

○ When was the last time you had a compat issue with CSS Grid? How
did you deal with it?

Wrapping up

● The “magic wand question”: If you had a magic wand and could change
anything about the browser compatibility landscape, what would it be?

● Do you have any additional questions for us?
● Thank you!

Appendix F: Interview Transcripts
This appendix includes all of the transcribed content from the 13 interviews.
Quotes from these transcripts are included elsewhere in the report, and these
transcripts may provide additional context.

Some questions not in the discussion guide were prompted by things from the
participants’ survey responses.

Note that far from everything that each participant said was transcribed. In
particular, if we asked about a topic and the participant didn’t have much to say,
it’s not included. Note also that the questions aren’t transcribed verbatim and
sometimes left implicit.

Participant 1
Browser support

What is support based on? Usage? Something else?

The most we cater is Chrome, Safari, Firefox, and Edge. Our user base
mostly… we have been working, you know, with corporate clients. They are
mostly not allowed to install any additional software in their systems, so
they really have to use the browsers that come with the operating system.
So that’s why we have to support Edge, mostly with people who are
working on Windows machines. And also for students, there are a lot of
students, you know, sometimes who are not that tech savvy and go with
the default Safari browser in the Mac and are not really interested in
installing Chrome. So we have to support Safari as it is the default browser
of Mac. We have to support Chrome because most users on Windows are
using that. Or Firefox. As I mentioned Edge is now the default browser on
Windows machines, so there’s a large user base there that is dependent on
that as well. And our analytics [inaudible] show that these are the top 4-5
browsers that users are most using.

Internet Explorer

What about IE, do you have to support it?

Internet Explorer was used quite a bit by a lot of people when it was the
default browser in Windows, but from what I know I think that Windows has
now switched to Edge, so there is about 1% of our user base which still uses
Internet Explorer, but the general consensus in the company between
product and engineering is that we’re not going to support that from now.

Safari / Scrolling

Trouble making a design work on desktop and mobile? What did you do?

The interesting one that, you know, we had to scratch our heads to find out
what was really going on was… There is this thing I guess in iOS and Mac as
well, that Apple adds a little custom scroll at the end of pages, on browsers.
There’s a special effect when you scroll to the end. That behavior was kind
of disturbing us when one of our layouts that we had built for desktop and
mobile both. So the scroll worked fine in Chrome in iOS, in Chrome and
Safari on macOS. But in Safari for iOS there was somewhere where that
scroll was interfering with our scroll. Sometimes, if you slide somewhere it
would scroll and if you slide with a different angle or you slide very fast
then the scroll wouldn’t work directly. That was an issue where there was
no solution or help on the internet, so we had to get creative and redesign
some of the screen to get around this problem. I don’t really know what that
problem actually is, but most of the internet help we found was about
Apple’s custom scroll animation at the bottom interfering with the browser,
or something like that.

Participant 2
Browser support / Internet Explorer

We officially support… I think our browserslist is pretty standard, last 2
major versions, not dead, >1%, market share, and we officially cut IE11. We
were supporting that until we realized just how bad the site was in IE11, no
one had ever tested it. We tested it and discovered that, in fact, most of it
didn’t work in IE, so we just decided to drop it. Most of our users are tech
savvy, they’re startups and they’re using browsers that are not IE, so it’s not
our audience.

Part of our product team thought that we were supporting IE much more
than we were. So it kind of just quietly happened where we were like: “so
this is bad, and we’re not going to worry about it.”

I used to work at a company where I worked on internal apps for a large
company, and our IT department enforced IE11 on all machines and that
was the only browser we were allowed to use. So unfortunately my
knowledge of IE11’s issues is pretty large just because I had to support so
much in IE11.

Unfortunately IE11, last I checked, is still at like 1.7% in the US which is just
really sad, but hopefully someday it drops to a pretty low number.

Flexbox

Anything for IE in the last 4 years? Workaround?

All the Flexbox gotchas that IE has are pretty frustrating, and I’m intimately
aware of many of them. This is actually the first time I’ve not had to support
IE in my career, so it’s pretty nice.

A lot of the flex issues were around height and flex-grow or flex-shrink. Just
simple things like explicitly setting a height on the flex child would fix the
issues. I think the other things are just things like IE doesn’t do CSS
variables. So if you want to do any reactivity with just CSS, it’s not easy.

JavaScript

Fortunately it’s pretty good these days. Like I said, we support pretty much
the last two major versions of any major browser, so, JavaScript is in a state
where it’s pretty solid, I would say. We do use polyfills for things that are
not supported and that’s managed by our build system. We have the
TypeScript compiler adding in its polyfills. A lot of that is just handled by our
build system. I forget the technical term for them, but we are using the
question marks before object property access, that’s an explicit polyfill that
we import in our project. But by and large I think most of the JavaScript
we’re using is pretty standard now, it’s pretty well supported.

I used the DOM mutation API recently and that was well supported on all
the browsers I tested. Things are fairly good now, it’s not like the old days
where there was a big gulf between browsers.

Web APIs

How about Web APIs?

For the most part they’re pretty complete. I’d say the biggest issue is not so
much the API itself not being implemented, but parts of API not being
implemented in certain browsers. For “scroll to element”, there’s a “smooth”
property that some browser’s don’t… I think it’s Safari that doesn’t support
the smooth object property in the scroll to element API. We just added a
polyfill for it, it’s like 2 KB so it’s not a big deal. Fortunately the build
systems we have are pretty good at putting in a polyfill for what’s not
widely supported.

Responsive layout

Last time you had a problem between desktop and mobile?

We use a grid system from a project called Vuetify, which is part of the Vue
ecosystem. It’s based on the Bootstrap grid system. It’s well tested, it’s
cross-browser, so fortunately we don’t have to worry too much about
layout issues. […] Just having a grid system that’s well supported and
tested by other parties is a super helpful tool.

No longer supporting IE, what kinds of benefits are you getting from a grid
system?

It’s something that we use in every component. Our design team is using a
grid system in Zeplin and Figma, which are their tools. We actually did kind
of a sprint to align with Zuchrids. [?] So now we have the Vuetify grid
system using the same breakpoints and columns, gutters and things like
that as the design team is using. Having those in sync now makes our
development so much easier, and it makes us not have to worry about “are
these columns lining up correct” or “are they collapsing when they should?”

Any other browser than IE a problem for Flexbox/Grid?

https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/Element/scrollIntoView
https://vuetifyjs.com/
https://getbootstrap.com/docs/4.0/layout/grid/
https://zeplin.io/
https://www.figma.com/
https://vuetifyjs.com/en/components/grids/
https://vuetifyjs.com/en/components/grids/

I would say Safari is the other wildcard, just because they’ve sort of
implemented their own… a lot of their own technologies, and they’ve
implemented standards with slight variations on behavior from Firefox and
Chrome, which seem to be kind of on the same page with a lot of layout.
Safari is kind of a wildcard, most of it is OK, but occasionally I do run into
Flexbox quirks with Safari. Usually a simple CSS rule will fix it, but
sometimes it’s a little more difficult.

Do you remember the last time?

I don’t. I want to say it was probably SVG related, just because SVGs are so
complicated and the way that we size them can be difficult. Probably an
SVG issue I would say. Can’t quite remember though. If there is a chance of
an issue with layout it’s usually Safari that we’re worried about.

Probably having to do with SVG aspect ratio or scaling SVGs or something
like that. But I don’t remember.

Scrolling

Aside from the smooth scrolling issue, any other issues?

I’ve encountered a scroll issue in Firefox on iOS where there’s something
about the way that Safari is embedded in the iOS app that messes up scroll
position sometimes. Because I think that Safari embedded is calculating
internal values based on what it thinks is the viewport, and the app is
actually wrapped in a smaller viewport because of the UI controls. That’s
my guess. So the scroll is a little bit off and I have to scroll with two fingers
sometimes to get it to like jump out of the containing window. But I think
that’s the only thing that I’ve seen.

Safari

You mentioned you support Safari. Any features or bugs, anything that’s missing?
Run into anything recently, “wish they had that?”

I think the scroll support is something that would be great if it were
cross-platform, cross-browser. […] Fortunately most of our layout issues

have been resolved with the grid system that we’re using. Occasionally we
use a Web API that’s a little arcane, like DOM MutationObserver for
example, but I think that has such good browser support that it’s pretty
good. I think Safari is just a wildcard because its development exists sort of
outside the rest of the other browsers. So there’s so much support behind
WebKit, but Safari sort of does their own thing. It’s kind of always a
guessing game as to what they’ve implemented and what new standards
they’ve decided… It seems like they’re a little more selective about what
they implement and don’t implement all standards completely. Much like IE
used to do.

Think back to Safari issues, more missing or implemented by
different/inconsistent?

Like I said it’s sort of a guessing game as to what Safari has implemented of
a standard. Sometimes they implement things that are not standards and
they sort of create a de-facto standard. But I’ve been doing web
development since I was a teenager. In those days things were a lot worse
[inaudible] browser support. I feel like this is kind of a golden era for being a
web developer just because there’s so many standards that have been
agreed upon and implemented widely. It’s mostly small API details here and
there that you have to work around and dig deep to fix.

Participant 3
Browser support

Usually the baseline is IE11. It’s still a thing. For the startup I mentioned, the
clients are mostly from the banking industry and large corporations. Some
strange IT policies where they still rely on IE11 internally. Apart from that,
yeah, the typical. I would say it’s more about engines than browsers
nowadays. It’s Gecko and Blink of course, and WebKit. But WebKit is, um,
especially… so on mobile we don’t test on Android most of the time because
we don’t have a device lab at hand, so we just hope for the best to be
honest. Because I have iOS devices I don’t want to buy additional things
that are just catching dust all the time, and spend a couple of hundred
bucks or maybe ever more just to get a decent range of Android devices.

You mentioned you don’t have Android devices on hand, do you do something
else to figure out if it will work?

We usually rely on… as it’s Blink working behind the scenes, we mostly rely
on that. Especially on smaller projects it’s mostly an issue of timing and
budget, so I use what I have at hand. I can also run a simulator on my
computer. It’s been a while since I did this with an Android simulator, but I
remember that the performance was very bad, and was not nearly giving
me a real expectation of what it’s like to use a website on a real device.
Maybe I can get hold of an old Android phone someday, but then we still
have the problem that I probably can’t run a current version of the operating
system.

I’ve tried BrowserStack, but haven’t been convinced I’d use it often enough
to justify a subscription. If I had a project that was more mobile focused
where it really was a key requirement that it runs on Android without any
hiccups, then I would probably test. Especially if it’s something that’s
important information for people, like say it’s information on Covid-19 or
something like that. If I worked on things like that I would probably give
much more attention to that. At the moment, it’s not that I wouldn’t care
about Android, it’s just a matter of what’s practical.

Scrolling

Any recent trouble making a design work on desktop and mobile, essentially
responsive layout problems?

We have to support IE11 and Grid support is limited. This often requires
heavy workarounds, so you always have to do a lot of things with the help
of additional JavaScript that you wouldn’t need to do otherwise.

What gives me the most headaches, typically, is scrolling behavior of iOS,
so, if I need to display a modal or something like a typical hamburger menu.
And still annoys me that I need a JavaScript library just to get this right, so
that if I get a modal, that the background doesn’t scroll on iOS. I think that’s
basically the worst issue that you stumble across in almost every project.

Is the issue bouncing at the end?

Yes. The goal is always that you lock scrolling completely. There’s a good
library for that, it’s not even large, it’s a small JavaScript dependency. But it
annoys me that you need these workarounds for doing simple stuff like
that. And while keeping support for desktop browsers, at the same time.

(The library was later confirmed to be body-scroll-lock.)

Safari

For Safari, you mentioned scrolling. Anything else?

In our CMS we have input fields using CodeMirror. We are still waiting for
version 6, I really hope it comes out this year. Because with iOS 13 there
have been a lot of changes, under the hood, probably. Because cursor
placement, copying and pasting inside of CodeMirror no longer works
reliably. Text selection is broken. I don’t know if it’s a CSS issue on our side,
but my guess is it’s mostly related to something in iOS that’s changed.

Also annoying, let me give you an example for another project. We were
using a pretty popular JavaScript carousel called Glide.js. With iOS 13 they
changed something and now scrolling works like garbage on iOS, especially
on older devices such as an iPhone SE or older iPads. All the animations are
broken and it doesn’t feel natural if you’re swiping through this gallery. Now
I’ve used this in 5 or 6 projects, and something that used to work fine is now
broken.

You mentioned scrolling, you mean going from one card to the next? Can you talk
more about what broke?

Suddenly the animation didn’t… if I start swiping on the other surface, then
the current slide just starts to follow my finger, but not in a natural way like
you would expect from native iOS component. A lot of sliders don’t replicate
the iOS behavior. This time, you just slide, and once you reach a point
where it should move on to the next slide, it just flashes and the next slide
is there. There’s no smooth transition. It’s probably mostly a memory issue
or performance issue. But it’s just annoying to see that something used to
work and doesn’t work any longer.

https://github.com/willmcpo/body-scroll-lock
https://codemirror.net/
https://glidejs.com/

I got this on websites that are mostly about displaying large photos. How
annoying is that, if it doesn’t work anymore? After you build it for a client
and it used to work fine.

What about CodeMirror?

We decided to wait for CodeMirror 6, because it’s built with mobile support
in mind and most of the content editing in the CMS currently still happens
on desktop, I guess. Yeah, it’s not nice.

I do a lot of text editing with my iPad, usually there’s a keyboard attached to
it. It would be much nicer if it would work like it’s supposed to.

Flexbox / Grid

Any recent desktop issues?

Just a week ago, we also had another carousel, and all the slides should
have the same height. The height should be dependent on the highest slide.
So Flexbox, and Flexbox, another Flexbox, all nested inside each other. We
didn’t start from scratch, obviously, we just used a slider component that
was already there. The slider component is not the issue here, in this case.
Flexbox had differences between Firefox and WebKit- or Blink-based
browsers. We couldn’t achieve these equal height slides on anything but
Gecko. In Gecko it worked fine, in all other browsers it did not, so we also
needed to have a JavaScript solution here. In this case doing layout
calculations in JavaScript is never clean, it always feels a bit dirty, but in
this case the slider’s based on JavaScript anyway. So OK, we made this
tradeoff.

Did you find out what the specific difference was?

No. The way Glide.js works is you get a container where all the slides are
stored in and this one uses Flexbox for display values, as far as I know. You
should usually be able to give each slide the same height, but it didn’t work
in anything but Firefox. Don’t know why.

So Flexbox, maybe, so, from the things that bug me the most. Mostly little
differences in Flexbox implementation. Of course we have to support IE11,

but even in other browsers you see a lot of differences. This is something
you face almost on a daily basis. You know your way around it, especially
with IE11 after a while. But I think there are still some bugs that remain, even
in modern browsers.

How do you generally work around differences that IE11 doesn’t support modern
things?

It really depends on the design, on the client. For this one startup, because
of a lot of clients from the bank industry, think they had 7-8% IE11 users. We
did everything in the most painful way, built everything to work exactly in
every browser. With the latest relaunch of the site we finally switched to
let’s call it “graceful degradation” or “progressive enhancement”, that’s how
we handle it now. If something’s too complicated to get it built in IE11 with
Flexbox, then we had compositions of images that were dynamic and
responsive and stuff like that. We used to build everything pixel perfect,
now we don’t do it anymore.

How about CSS Grid?

Simple grids work in IE11 as well, it’s often much easier to do things even
without having all the latest grid features available. For other projects I’m
starting to transition to grid layout. I wouldn’t say I use it 100%, Flexbox also
has its use cases. I think back then I avoided using Grid, I still try to get
around it especially with older devices in mind.

A lot of people in my family actually still use an iPhone 4S. I know a lot of
non-technical people who just don’t care and I think it’s fine. Those people
shouldn’t be left behind. It’s not IE11. Maybe IE11 even holds back the web a
bit in terms of what features are used. I think a lot of older smartphones
maybe also profited from that, you know, because they’re no longer
supported and get software updates. I’m a bit afraid this will change now
that IE11 is about to die.

Participant 4
Browser support

Usually I tend to work on Chrome, because for me it’s like most dominant
browser on mobile phone and also on computer. Also it’s always on top
regarding the different APIs, it always has the last. So I tend to focus on this
browser. If something doesn’t work I look at Mozilla to see how it works in
their browser. So I have at least those two working together. For me I guess
it’s enough. I’m concerned about compatibility but l’m looking at where the
most users are and I tend to focus on these points.

How about Safari on desktop or mobile?

Safari is almost like Chrome, but I don’t like these browser vendor prefixes.
So if the Chrome API works in Safari it goes fine, otherwise I will not test it,
so I will never know if there’s a bug happening.

PWAs

What was the last issue you had with vendor prefixes?

It’s been a long time. Now my biggest issue is when you try to make a
progressive web app manifest, it’s different for each [browser], so it’s a
bit… repetitive task to create multiple manifests for different browsers.

Different browsers required different things?

Different sizes of logos, different information, different scopes. That was
enough, like “OK.” Some frameworks tend to automate it, but I didn’t event…
now I’m already focused on the JavaScript part, trying to work offline,
looking for a project where I can include web workers in a very efficient
way, so for now I’m not really focused on the manifest anymore. But it’s a
point I wanted to discuss, because I think it’s [inaudible] if you want to
make [inaudible] to progressive web apps, it’s good to have a manifest
that’s easy to build for any developer.

JavaScript

You work with vanilla JS, any recent compat issue?

No, because by working with different teams, they all like React a lot, and
they like the build system that is Webpack, which fix the different
compatibility issues.

On the JS side, do you use the latest JS features?

Yes, exactly, and I include Webpack in my build. I used to work with full
JavaScript but having Webpack to fix different compatibility issues is less
work done for better work done.

Internet Explorer

Do you support IE?

No, not at all. I tend to program next generation apps, or I try to. If you are
looking for a next generation experience you can not find it in an old
browser, so I don’t focus on Internet Explorer, because for me it’s old and
old browsers don’t want new experiences.

Did any client require it?

Some teams I’ve joined, yes. But they had a build system ready so I didn’t
have to build for Internet Explorer.

Testing

When you ship new features or a project, what does the testing look like?

I tend to do direct testing by myself, because to automate those kinds of
tests is pretty difficult. I prefer to work with websockets, so I find that just
to program the test for websocket means I have to add some delays and
change different things. So I prefer to test, and sometimes I try directly in
the console. I just keep adding pieces until it’s complete.

Participant 5
Compat issues

Last time you used Web APIs and had compat issues?

In a personal project I’m using Web Share API and Preload. When I share my
URL with Web Share API in Chrome the platform just handles it, we can
share with Twitter, with WhatsApp, with Telegram, or with anything. And
then when I tested with Safari it just worked. But in Firefox it doesn’t. Also,
for preload, it works on Chrome and Safari, but in Firefox it doesn't yet. In
this case, for preload, I just used the stylesheet for that because I’m
preloading CSS.

What did you do?

So just give the user “sorry, it doesn’t work with Firefox, try another
browser.” And I think I’m using a second one, the user can copy the URL
and paste into another platform, Twitter or anything. I want the platform to
handle this instead of the web developer.

Magic wand question

I would like that Web APIs are supported in 3 different engines like Chrome,
Safari and Firefox. Usually I see that Chrome is too fast when they ship web
APIs in their browser. Firefox and Safari, I don’t know their direction, but I
think they are full of consideration, but it takes a long time maybe until… I
just wish that for example if Web Share API is supported on Chrome this
month, then maybe 1 month later Firefox supports it and 3 months later
Safari supports it. I wish that, because it’s trouble for us. These APIs are
cool, and we are using them, we want the platform to handle this, we don’t
want to do extra work to handle this, we want the platform to just handle it.
I don’t know what exactly happened between Chrome, Firefox and Safari
when Web APIs land in one of the three browsers like that.

Participant 6
JavaScript

There was a difference between Firefox and Chrome when it came to
CORS. This was back in either November or early December. This actually
relates to CesiumJS, using an ion service. What they do is they offer tilesets
and terrain that you can grab from their server and render it with their
CesiumJS platform. That’s all fine and dandy, but something in one of the

Firefox updates just completely broke the CORS, or rather the CORS broke
the program. Even though running on the website (not localhost or
anything) and even though it should have been sending the proper origin.
Because I looked in the headers, and it was sending the origin and sending
accept headers, but for some reason the options we received in the
response didn’t actually work in Firefox. It was sending the… wasn’t like
HEAD… I forget the term for it, but it was reaching out to the server asking
for CORS and then it was saying “nope, can’t do this.” And it was doing this
for every single tile that came from Cesium ion servers.

This was on Firefox and I thought that was just broken with Cesium. I was
about to submit a bug report, open up an issue, but I checked it out on
Chrome and it worked just fine. So I looked into it a little bit more and it was
something to do with the strict syntax, I think that Firefox had a little more
strictness to it when it was looking for CORS information. And Chrome
seemed to be fine, like it didn’t really care one way or the other if this was
sent first, or if this was in a certain case, as long as it received the
information it was fine with that. Whereas Firefox was freaking out about
either order or like literally either uppercase or lowercase. I don’t know what
actually did it, but about a month after that started happening Firefox had
resolved the issue, but that’s just one example.

Safari

Do any incompatibilities come to mind?

I’ve noticed that the fonts, for some reason, don’t really render correctly. I’ll
have a font that was stock issue from one of those… it wasn’t Typekit and it
wasn’t Google Fonts, I forget what the CDN was. It was a relatively old but
stable font, that we could include anywhere. I noticed that even though we
had the margin right, the padding right, the kerning right, everything was
just spot on, the display of it on Safari didn’t look right, it was like the width
of the characters, even though it was in the same style, it didn’t have the
correct width, or thickness rather, for the letter strokes. We kind of had to
throw our hands up and say “well, this is just going to look a little bit weird
on Safari.” So that was an unfortunate thing.

I’ve noticed some other CSS-related issues. I can’t think of one off-hand,
but it was either something about vw or vh for the viewport width and

https://cesium.com/cesium-ion/

height. Or percentages for widths and heights. It was some irregularity with
that, and although it was perfect on Chrome and Firefox, it just did not look
correct on Safari. We still support it, because it still works with the
dashboard that we’ve been building, but some of the things don’t just quite
look right. You know, it’s little cosmetic things, it’s fine, it’s just not perfect.

Performance

Since we’re doing a lot of WebGL stuff we have to recommend that
everyone that uses our website uses Firefox, because it is just not
performant on Chrome, sorry. I guess it works, it’s just you can’t really get
up to 60 frames per second, especially with a lot of entities and assets
being deployed. I don’t know if it’s specifically CesiumJS or if it’s my code, I
haven’t done a strict A/B testing. We’ve just seen that Firefox seems to be a
lot more performant. So we definitely recommend Firefox over Chrome, but
Chrome works and, you know, a lot of people use it so we don’t really say
“don’t use it,” we just, if we have a chance we recommend Firefox. For this
specifically, for the algorithms we have to run and for WebGL, I think some
of it is also WebAssembly with CesiumJS specifically, some of the workers
to load in textures, those are a lot more performant on Firefox for some
reason.

Magic wand question

Would be great if Firefox would take some of the best things from Chrome
DevTools. With WebGL we see a lot of errors, but in Firefox just see a
warning or error and no trace. Chrome gives a trace, and the debugger is
amazing. Instant/eager evaluation in Chrome was great, happy that Firefox
is doing something similar now.

Participant 7
JavaScript

Thank god now we have transpilers which do the dirty job for you. Just
because I told you I still need to make something for Internet Explorer, the
two latest versions of Angular have started avoiding being compatible with
Internet Explorer by default. They have Angular 8 and 9 default settings
which avoids transpile for Explorer. So when I attempted to upgrade an

application from 7 to 8 I found out that nothing was working with Internet
Explorer. I found out why. But generally transpilers help me much.

Lately not much concern with JavaScript/ECMAScript/TypeScript
compatibility because we have very, very good polyfills and transpilers, so
there is not much concern about ECMAScript.

Forms

Encountered any incompatibility issues recently, when it comes to forms?

Not in logic, but in the layout. It’s always been a pain for me making decent
layout among all the browsers, or better, among all new and legacy
browser. Because with Firefox and Chrome there is not much trouble in
hiding the generic selectors, default selector, etc., But when it’s time to do
the same on Internet Explorer […] it’s still a pain. And there are some other
things which I would like to be implemented, like styling the scrollbars, or
whatever. The scrollbar would be appreciated. Styling the scrollbar, just like
in Chrome.

Edge / Internet Explorer

I hope that Microsoft will roll out the new Edge as soon as possible. I never
thought much of Edge even in older versions, because it has always been
mostly compatible. It still had some troubles like in the placeholder CSS
pseudo selector, but nothing particularly hard to solve. Anyway, I hope that
Microsoft will soon release the Chromium version, or roll out the Chromium
version on Windows update, and the world will be better.

You mentioned a selector issue in old versions of IE. How did you work around
that, the last time it came up?

I don’t remember whether it was on Edge or Internet Explorer, but there is a
selector which says if you have a placeholder in a form input is shown or
not. In that case, I wanted to remove the label when it was not shown, in
order to make a cool-to-see input field. But it could not work in Internet
Explorer and I wanted a CSS-only solution. I had to make a different layout,
because there was no other CSS-only solution to make it backwards
compatible with Explorer.

Note: This was about the ::placeholder pseudo-element.

Safari

You mentioned you want to stick to things that also work in older browsers. How
do you find out what works and doesn’t work?

Testing, just testing. I would like to say that when Explorer will definitely
die, my new concern will be Safari on macOS, rather than iOS. Because I
also hate that browser, because I often found many bugs.

Last time, or a big one?

The biggest one who made me angry in the past was that in Safari, don’t
remember if only mobile, but if you have a fixed bar which moves rather
than animates, and you scroll down, the bar is not refreshed until you stop
scrolling. It’s refreshed just only when you stop scrolling. So you have to
find some workarounds in order to force Safari to refresh the layout of the
scrollbar, or whatever is fixed on the screen.

Responsive layout

Recent issues?

Not using the most used platforms. But my colleagues asked me for support
for a newly made application in another team. It was due to a bug in
Bootstrap 3. There was a box which went on a new line in only iOS, just
today. It was a bug on the grid of Bootstrap 3, which was fixed in Bootstrap
4.

Magic wand question

For my current job, I would work on styling the forms. Just today I was
trying to inject a background in a <select> box, in the options I had some
car brand’s names and wanted to set a background with the logo of the
brand. I could not do that, if not using a wrapper, a fake <option>, because
it cannot be done in an <option>. I think there’s space for evolving the
layout for the forms, select boxes, input and scrollbars on Firefox.

https://developer.mozilla.org/en-US/docs/Web/CSS/::placeholder

Participant 8
Browser support

When you build things on the web, what browsers do you typically support. Do
you have a typical set, or is that defined by your customers, how does that work?

It depends. If there is already an audience and already data for that
audience, then we try to see what browsers are used. It’s always good if
you can drop Internet Explorer of course, but it’s not always the case. That’s
it. It depends on the target audience. If it’s for a broad audience then we
look at the countries that are concerned by the project and start based on
this. Sometimes, also, the project doesn’t have to support Internet Explorer
but the client typically uses it, is blocked on Internet Explorer, so we still
have to support it to smooth the communication with the client.

Internet Explorer

Last IE11 problem, do you remember what it was and what you did?

I think it was a missing polyfill, a JavaScript polyfill, but I don’t remember
the feature exactly. Something around Object.entries() or something like
that, I’m not sure. I don’t remember the exact problem, but I quickly noticed
that it was something around JavaScript, so I just opened the IE devtools,
saw the error and understood a polyfill was needed. That was a polyfill
available in the core-js library, which is a library that has a lot of polyfills for
modern JavaScript features, ES6 and more, and you can cherry-pick the
feature you want so that you don’t have to import a full library of polyfills,
just import the one you need.

Filing bugs

(Regarding a position:sticky issue not transcribed.) By any chance, did you file a
bug for this, or find a bug?

No, no no no, no. I didn’t. Usually, I’m a bit discouraged about filing bugs,
because it’s not clear how to properly do that, and where, whether it’s on
Chrome or Firefox or Safari. I think the process isn’t well explained and I

https://github.com/zloirock/core-js

personally have a hard time to understand what is to correctly fill out a bug,
while I regularly do this on GitHub for example. That’s it. Usually when I
have this kind of issue I never go into the process of filing a bug for
browsers. When you see a discussion about a CSS spec that is ongoing,
sometimes I’m interested, but the discussion seems like you have to
consider a lot of things to participate in these discussions. Even by giving
your “I will be a user of this CSS feature in the future”, even that I’m not
sure… it doesn’t seem to be very welcoming to non-spec-writer views. But
maybe it’s just me, the way I feel about it, not sure.

Participant 9
Background

I’ve been doing this for a while, I started web development back in the IE6
days, like around 2006 or -7. I know this focuses on browser compatibility,
but… Back then browser compatibility was non-existent. I have some battle
scars, I still have nightmares trying to get PNGs to work in IE6. The trauma.

Browser support

Basically all the evergreen ones and… I think it’s Edge 15 and up, according
to our research. Enterprise is a bit heavier on Internet Explorer usage but
we just decided it wasn’t worth it and we’ll just ask them to use something
more standards compliant.

Mobile browsers?

Basically Chrome, iOS Safari. We’ve been going back and forth on the iOS
numbers, but we’re targeting Safari from iOS 12 and up. It seems in general,
at least from our research that iOS users are pretty good about staying on a
fairly recent iOS version. And Android browsers… we haven’t done a lot of
testing on Android but we’ve tested in Chrome for Android. Since that gets
updates pretty frequently we haven’t really had any problems there either.

Viewport / Scrolling

The responsive layout you’re using, do you remember when you implemented
that, any browser compat issues that stand out?

A few things, yeah. Sticky headers, in some browsers position:sticky isn’t
quite so well supported. Then there’s the odd viewport sizing in iOS that
was a little bit of an annoyance. I kind of read the whole, long bug tracker
thread in the WebKit forum about why they decided to size the viewport
units the way they did. And it makes sense, I understand the logic, but we
did have to figure out a few workarounds for a couple of our screens.

On iOS, as I’m sure you know, as you’re scrolling the address bar will
collapse. The viewport size is calculated based on the collapsed size of the
header. If you want, say a full page screen, that fills the screen but no more,
then you can’t use viewport units. There is some webkit-specific stuff
baked into Safari that we ended up using that will avoid that problem. But
that was one of our initial stumbling blocks when we were trying to have a
full-screen, non-scrollable view in mobile Safari.

We use -webkit-fill-available to handle that. That was the primary fix we
found for the 100vh size issue in mobile Safari.

Does Chrome do it differently?

Honestly I can’t remember if we had the same issue on Chrome for mobile. I
know on iOS it uses the internal WebKit, so it probably just worked from
that same property.

You mentioned position:sticky, what did you do?

The problem was actually in Edge. We had a stack of fullscreen videos that
would stick as you scroll. On Edge there was a crazy amount of flickering as
we were scrolling. We actually never quite fully resolved that. We made it a
little bit better by drawing the videos, the background videos, to a canvas
element instead of playing the video directly, which helped a little bit. But
we honestly, it was something we just didn’t have the time to figure out, and
given the percentage of people who use Edge, we just decided it was
acceptable.

Other scrolling issues?

We haven’t released it yet, but there’s a new homepage for our brand that I
was building out. It had some fancy parallax effects and stuff. It was weird
because on iOS on an iPad – it worked fine on mobile – but on iPad
everything was really janky. It turned out after I had chatted with one of the
senior engineers from the design firm that was helping us out, that iOS has
performance issues when trying to animate an element that has text
shadow. Once I removed the text shadow then things were smooth on the
iPad again, which was kind of an oddly annoying thing to fix. I just darkened
the background of the videos a little bit and then it looked OK. That was
something I did not know, I had no idea that text shadow could cause
issues like that on an iPad.

I had mentioned the issue of rendering video to a canvas. It seems that iOS
was a bit more stringent about how much memory a canvas can use. We
ran into some flickering issues on a… I think it was an iPad Pro, an older
12-inch iPad Pro. Because it’s such a large canvas running at a very high
resolution, sometimes the edges would clip as you would scroll. The way
we fixed it is we ended up having just two separate canvases drawing the
same video, and that stopped the flickering. I guess an individual canvas in
iOS is limited to a certain resolution. Yeah, it was an odd thing that I kind of
stumbled into.

Safari

Speaking of Safari. Features you wanted but couldn’t use?

I was really hoping Safari would support offscreen canvas, but it does not
yet. Offscreen canvas in Chrome or Mozilla, you could do your drawing and
compositing off-thread and it really bummed me out that we couldn’t do
that because Safari doesn’t support that yet.

I just tried to optimize the canvas drawing as much as I could. I basically
created a canvas that wasn’t attached to the DOM. I would do the drawing
calls there, then, once everything was after composited and layered
properly, then I would draw it onto the real canvas.

Chrome

The other thing with some of these background videos is they had clipped
angles to them, the videos would have a clipped shape. We ran into
clip-path issues. My initial implementation used clip-path, and the problem
that I had with clip-path was that, for whatever reason, on Chrome, it was a
little jankier than the rest. Maybe clip-path wasn’t optimized for constantly
changing content like a video background, and so the scrolling would kind
of flicker and lag at the edges. Similar to Edge, but a different effect. I
ended up using canvas to basically… I used the canvas blend modes to kind
of do some compositing to clip out the shapes that we needed.

Scrolling

Anything else recently on scrolling?

You know how the iPad Pros have that nice, fast 120Hz screen?
requestAnimationFrame will max out at 60fps even on the iPad Pro. You
have to be really obsessive to notice it, like I am, but I did notice that when
you’re scrolling, certain elements would not… the transitions were not as
smooth than the screen was scrolling, because they were running at 60fps,
while the page scroll itself was running at 120fps. Most people wouldn’t
notice, but it did bug the hell out of me. It is an open bug, I did see an open
bug on WebKit forums, so maybe that will come at some point.

JavaScript

With Babel and preset-env available, it kind of polyfills things that aren’t
there, so I didn’t notice anything. I’m very grateful that the Babel team has
made those types of incompatibilities a worry of the past, because
everything gets polyfilled automatically.

Web APIs

I did notice an inconsistency, and I’m not sure what the spec should be. As I
mentioned before, I was doing video compositing using the canvas blend
modes. I noticed that what I had layered various images or shapes with
blend modes, the behavior was different between Firefox and Chrome &
Safari. My gut feeling is Firefox probably sticks closer to the standard and
that Chrome probably inherited WebKit’s quirks in that area. But there were

some differences in the way that the canvas blend modes were composited
between Chrome and Safari and Firefox.

What did you do?

I just tried a different combination of blend modes to achieve the same
effect, I changed the ordering a little bit until they all looked the same. Trial
and error, basically. Like I said, I haven’t read the spec, and it sounds like
very dry reading… I didn’t really see which one was correct. For my
purposes it didn’t really matter, as long as they all look the same.

Performance

Cases of inconsistent performance?

I did notice that scroll events are fired differently in Safari vs. everyone
else. Safari would… I took a few stabs at this and in the first stab, Safari
would only fire the scroll event after the scroll had finished. So I ended up…
the workaround I used for that was to just use touchmove and just call the
same… Basically I had a render loop running, in a requestAnimationFrame
loop, and I would update things in the touchmove event in addition to the
standard scroll on Safari. That was one issue I came across.

Magic wand question

That is a tough question! I think ideally, everyone should just follow
whatever the standard is. But the problem is, sometimes, the standard
isn’t… you know, standards change, and it doesn’t specify every single
detail, which, you know, that makes sense, it’s almost impossible to do that.
But if every single rendering, regardless of platform, would follow the
standard as closely as possible, that would be a beautiful world.

Participant 10
JavaScript

Do remember the last time you ran into an interoperability problem with
JavaScript?

Probably yesterday. Because we are supporting Internet Explorer 11, it limits
the amount of modern JavaScript we can use. We relied on jQuery for many
years, and it’s still in our main codebase. It’s only been a few months that
I’ve been switching to write everything new in vanilla JavaScript. We haven’t
refactored it out of our site, but we’re removing things, like, we don’t, we
just got rid of Modernizr, and we had a text truncation plugin called
dot-dot-dot that I just coded a replacement for this week. So that’ll drop
later this month. So we’re making strides to reduce the amount of code that
we have to send the browsers. So I’m dealing with new things that are “old
hat” for most people, but I didn’t realize that if you have an element and use
classList.add(), you can’t add two classes at the same time in Internet
Explorer 11. So I ran into that recently, I said “Why isn’t this class showing?
Well, it’s because it doesn’t support multiple classes at the same time.”

Did others support that OK?

Yeah, and I haven’t done anything with ES6 at all, I’m just trying to get going
with vanilla JavaScript that’s going to work in IE. I haven’t found it incredibly
difficult, but some people on our team do often use ES6 and transpile it for
older browsers. And that’s fine, but so far it’s only been on these isolated
projects and tools that are maybe on one page of the site. But the overall
site, thousands and thousands of pages, I just don’t feel comfortable
changing the process from using the file that runs. We could build it into our
build script that compiles… like we have Sass for CSS and it compiles and
builds the code and pushes it to the server. But we just haven’t prioritized
that.

Unfortunately, we had a problem with the recording of this interview after the first
topic, and couldn’t transcribe the rest. We did take notes, however, so the
feedback was not lost and is included in aggregate numbers elsewhere in this
report.

Participant 11
JavaScript

Recent JavaScript issues?

https://developer.mozilla.org/en-US/docs/Web/API/Element/classList

One is the double clicking on a touch screen, like a surface laptop or a
cellphone or a tablet. Specifically the surface laptop is a very interesting
case because it shows people that you can have touch screen and mouse
input at the same time. This is something that I looked really hard on the
W3C standards and didn’t find an answer to, which is, when does the
dblclick event fire? No one knows, it’s not specified. And interestingly
enough some browsers, on the same platform, do fire dblclick when you tap
twice on a touch screen. […] Some platforms, when you double tap the
screen on the same point, it will fire a dblclick event in JS. Some other
platforms will not, on the same hardware with the same code. That was hell
because the problem with this is there is no feature detection for that case.
I cannot automate that case, I can’t have a test grid with a rubber finger
hitting the screen with different browsers. I can’t Selenium that shit.

What happened in the other browsers?

They just don’t fire the dblclick event. You have 2 pointer events. You have
one pointerdown event followed by a pointerup event, and then another
pointerdown event and another pointerup event. Then you have the
backwards compatibility mousedown and mouseup events, but you do not
have a dblclick event. You just don’t have it.

Standards process

Prompted by a discussion of how Google and Mozilla are working on this research
together:

One critique that I have to make is that Google, the Chromium team, has a
tendency to create a new standard way too fast. Then Mozilla cannot keep
up with that standard. By the time that Mozilla and Safari and maybe
Internet Explorer have caught up with that standard, there are bugs on that
standard, but Chrome has already rolled that out and there’s a Google
product that uses that new standard. “I’m so sorry, we cannot cancel this
feature, we cannot get this feature out of Google Chrome because we
already have Google products depending on that.” […] Please don’t
implement standards before another party has implemented that same
standard you’re proposing.

Someone has to implement it first, right?

Yes, and it shouldn’t be the person who designs it. […] One person designs
the standard, another person implements it. If you cannot design the
standard so well that you trust any other person in the world to implement
that standard correctly, you shouldn’t be implementing that standard in the
first place.

Participant 12
Touch input, scrolling and animations
In this interview we got to learn about the challenges with a specific project,
touching on many different topics:

I’m very interested in making very fluid, smooth web applications, especially
on mobile. And struggling with that a bit too much to be honest, especially
with browser compatibility. I feel the web platform community really wants
it to be there, like you can build apps that feel like native, but I always feel
like it’s a bit of a lie, because even if you do your very best and you put a
shit-tonne of effort into it, it’s probably still not going to quite feel like
native, especially when it comes to touch interactions and stuff. Gestures
are very difficult. Sensor stuff works, but maybe not as well. That’s what I’m
struggling with a little bit with the web platform.

Tell us more about the last mobile web application you worked on.

One major web app that I worked on that was very mobile focused, and also
very ambitious, was a 3D room planner […] The idea was to have an
application where you could arrange pictures on the wall and try out
different arrangements. […] We wanted to have that working really
smoothly on mobile.

On the one hand it was very challenging to get a lot of the 3D stuff right.
[…] We did a lot of prerendering so the performance was actually not so
much of a problem, and from the 3D side I think also the compatibility was
fine. I didn’t do most of the WebGL stuff, but I feel like as long as you don’t
have to support IE11, because that’s a little different, the compatibility is
pretty much fine across all browsers and they all behave mostly the same.

But what was really difficult was to get all the touch interaction right. It’s
really not a page, it’s more like Google Maps, for example. We actually
looked at that a lot for the interactions, because you can pan, you can
zoom, you have all of these interactions and it’s really not a page that you
want to scroll on.

Then we just struggled with stuff like the browser bar. If you want to scroll,
maybe you have a scroll container somewhere inside, and then the browser
bar appears and disappears. And you don’t get resize events when the
browser bar is in the process of disappearing, it just resizes after the
browser bar disappears completely. Maybe in between it’s not going to look
so nice.

Also things like vh, the viewport height […] I don’t entirely remember all the
details, I just remember that it was different across browsers. I think
whether the scrollbar is considered part of vh height is a little bit undefined,
and it’s definitely different in Safari and Chrome.

The safe areas on iPhone X, that’s another thing you have to take in. There’s
not much specification around that, it’s just vendors doing their own things,
adding their own overlays. I think Samsung Internet also has their own
overlays at the bottom and you don’t really have access to get information
about how much space they take in, so you can move your interface around
them.

Also a lot of how scroll detection itself works. […] Like what Google Maps
does on the native app, I don’t know if they do it on the web, where you
have this bar that you can pull up from the bottom. If you select something,
you can pull it up from the bottom, then you have the details about a place.
We had something similar to that for individual products on the wall. First
we wanted that to have that be a native scroll interaction because we
thought if it’s just a native scroll it’s going to be fast, it’s going to be
hardware accelerated, it’s going to feel the nicest. But if you’re working with
native scroll it’s very difficult to control it, because for example scroll event
listeners are – for a good reason – passive now on Chrome and on Safari I
think that’s also the case now, but it’s not super consistent, also again not
really standardized, I think.

If you animate the scroll that’s getting really difficult, we’re struggling with
that again lately. I made the mistake of trying to use native scroll for
something where I wanted to have too much control, again. If you scroll and
there’s a certain scroll velocity, and you lift your finger up and it keeps on
scrolling, and it reaches a certain threshold and you want to have it snap
there. […] If you want to do it by JavaScript you can set the scroll position.
On iOS I think that’s going to stop the scroll velocity immediately. On
Chrome it snaps to that point but it keeps on scrolling with the same
velocity. It doesn’t reset the velocity, it still has that speed, that motion, it
just sets the position for where it’s moving. So it’s pretty much impossible to
control that. In the end I think we had to completely redo the scrolling,
pretty much and just have everything be translated via a transform
translate and just do all the scrolling by JavaScript. Because we were
already doing all of this gesture, touch input handling, anyway, and it was
just easier and more seamless if we didn’t switch between different modes.

I actually had that same thing again, that I wanted to build a “simple”
horizontal slider on a completely different project. I first thought it’s just
horizontal scrolling, if I’m going to use native scroll that’s going to work fine.
I think it’s also a pretty common pattern now to use on mobile pages and
just maybe hide the scrollbar, on mobile there’s no scrollbar anyway. And
then you have these horizontal, pannable sliders, where you can just pan
through different products horizontally.

Do you mean like a carousel?

Yes, like a carousel, pretty much. But the traditional jQuery carousel is just
sliding between different items, but that doesn’t feel so nice on mobile. So I
think a lot of ecommerce sites are moving to carousel through products.
Also in the Google results you will find that for the products, or even the
menu items, often in a tab menu are like that, pannable. I wanted to adopt
that pattern, to just use the scrolling. Again I ran into a problem, if you want
to control that, you want to have your own snapping behavior, and control
the snapping via JavaScript.

I like to use this animation library called Motion, it’s not really that relevant
to this, it’s just a JavaScript animation library, it’s very lightweight. It’s really
nice to have snappy animations. You can’t really do that kind of stuff with
scrolling. I think there’s now the CSS snap points API, which is kind of

covering that. I haven’t heard that much about it, either because I just didn’t
know about the API, or it’s really, really new and it’s not widely supported. I
think it’s not widely supported, but I might be wrong because I haven’t
heard too much about it yet. I think the API would kind of cover that use
case, and you can just have snap points defined in CSS and don’t need
JavaScript at all because it’s all handled natively. This would probably be
really difficult to polyfill for older browsers, for the same reason that scroll
is really hard to control.

With native scroll events, if you have touch input and first you have a
touchdown, then you have a touchmove, and then eventually you have a
scroll event, it kind of connects together, and evolves into the next kind of
event. A very common pattern you want to do if you have scrolling on touch
input, or if you want to do it often, is you don’t want to immediately start the
interaction when the touchmove event happens, but wait a little bit for the
direction in which the user is going to move. For example, I think most web
browsers do that, or most native scrolling, that if you have horizontal and
vertical scrolling, if you move your finger vertically it’s going to start moving
vertically, if you moved horizontally it’s going to move horizontally. It’s kind
of locking in the direction.

Also it’s important to differentiate between a single touch and a scroll. I
think there’s this threshold of about 5-8 pixels, something like that, until the
scrolling is going to start. This is something that Chrome does, and iOS
does as well, or WebKit does as well, that you don’t start scrolling right
away. If you have, for example, a carousel that is horizontal and it’s built
with transform translate, and you control the carousel entirely via
JavaScript, you might want to listen to the touchdown event and then wait
for touchmove, and only start moving the carousel when the touchmove
has moved enough to right or the left. Otherwise it’s probably going to be a
scroll, and if the user is just scrolling up and down you don’t want to have
the carousel move a little bit to the left and right, that’s going to not look
nice. You can do that, that’s possible.

The problem is the other way, if the user starts moving the carousel and
then decides to also move their finger up and down, you don’t want the
browser to suddenly start a scroll interaction. You can do it on iOS, because
on iOS you can call preventDefault() on the touchmove event, if the
touchmove event hasn’t led to a scroll yet. Because first there’s the

touchstart, then there’s touchmove, and then iOS does the same thing, and
only after the user has moved their finger these 5 pixels the touchmove is
going to start being a scroll. If it’s not a scroll yet you can call
preventDefault() on it and iOS will stop taking that touch event and making
it into a scroll event.

After it is already a scroll event, it’s a scroll interaction, and there’s an
intervention that you can’t end scroll interactions, it’s completely blocked. I
don’t think there’s a standard for that either, it’s just it doesn’t want you to
block an ongoing scroll because it’s going to look very laggy and glitchy. On
Chrome you can’t do that and you have to stop the touchstart event. If you
call preventDefault() on touchstart it’s not going to become a scroll
interaction, you can prevent scroll entirely, but then you don’t know in
which direction the user is scrolling. So you can say on this event I don’t
want the user to be able to scroll at all, but you can’t say after it has moved
a bit, that it can’t be a scroll. Finding these things out is very difficult and
very time intensive. I’ve done a lot of demos and codepens experimenting
with browsers. It’s very frustrating because there’s not really standards for
it, or documentation and stuff. It got to the point where I started looking
through the source code of the Chromium project.

You looked through browser source code?

I tried to look at it, but I didn't get far enough. I just experimented a lot. The
person who implemented it is probably going to be able to correct me, and
there’s probably going to be some things different, because it’s only from
observation what I just described. It was just very difficult to get these
things working, like really, really, really difficult. We did a lot of iteration, a
lot of testing, over time. I kind of got really obsessed with making scrolling
really nice on mobile and trying to make native-like applications on the web
that don’t feel like they’re just a glitchy web page.

For that specific Chrome issue, did you by any chance file a bug?

No, I haven’t done that. I’ve started filing bugs lately for things that I come
across. […] It’s difficult to know what the right behavior is, I don’t feel
confident enough to be able to file an issue saying “this is what’s wrong,
this is the clear bug.” I guess it's probably already helpful to know that it’s a
pain point.

How did you work around the cancelation of touchmove events leading to scroll
events?

I think actually I confused Chrome and iOS before and it’s completely
different, but it doesn’t matter, it’s inconsistent. I think on iOS right now it’s
not really working. If you swipe through the carousel and then you start
moving your finger up and down, it’s going to start scrolling, and I decided
that’s something we have to live with. The common behavior, most
carousels actually have it I think, or most that I found. There is one way to
work around it, and that’s to not use transforms but to use scrolling,
because then you can tell with some crazy CSS that I always forget that
one thing is a horizontal scroller and one thing is a vertical scroller and then
natively WebKit’s going to decide that it shouldn’t start vertical scroll
interaction if you’re already in a horizontal one. But for the aforementioned
reasons it isn’t too bad.

Do you have issues like this on desktop?

Mostly mobile, desktop is pretty much fine. Things I ran into are stuff with
viewport units, viewport width I think is inconsistent if the scrollbar is
considered part of the viewport width. I don’t know… I tested it once, and
there’s like two values, is the viewport width, is that including the scrollbar?
Also how it behaves around resizing and resize events. I tested it for Edge,
Firefox, Chrome and Safari and I think it’s pretty much all possible
combinations in all four browsers.

JavaScript

Recent issues with JavaScript specifically?

Obviously there are differences in support, but these are really not that
problematic because you know what’s supported and not, and it’s very easy
to deal with that. If you’re working on a bigger scale and have a bit more QA
and work harder on supporting browsers, if you know this browser’s not
going to support some features, it’s really easy to plan for that.

The biggest thing that I currently find problematic is the handling of
requestAnimationFrame and microtasks and the event loop is

inconsistencies between WebKit and Blink. I think the Chrome way is the
correct way, at least I heard Chrome DevRel people say that at
conferences, that microtasks run directly behind regular tasks, and
eventually you have the animation frame right before the paint. In WebKit I
think there was some inconsistency around microtasks, I think there are no
microtasks? I don’t know exactly. And requestAnimationFrame actually
triggers right on the other side, so after the paint has happened. Well that’s
not good. It’s not that bad, I think in most places it works fine, but if you
want to optimize your code and really have it be performant, I think
sometimes timing problems around when that triggers and you want to
really have predictable [timing].

How do you deal with missing JS features?

In most projects I have a fairly common stack of Babel and Webpack, and
also Babel polyfills. Babel became very popular for all the syntax stuff in the
last couple of years, and I kind of see it as a given now, even though I also
think that now, a couple years after it really became adopted, maybe
starting from 2020 it actually should be an option to think about, if you
actually need Babel in your build stack, because a lot of it is supported now
and is not as relevant anymore. But because I come from the mindset that I
need to support all the way down to at least IE11, maybe even IE9, naturally
if you want to support IE9 you’re going to have Babel. Different
combinations of core-js polyfills, either manually or through Babel polyfill. I
tried out different solutions.

There’s a project from the New York Times, polyfill.io, that does testing for
browser features and lazy loads the polyfills. I always thought that was
interesting to consider but haven’t worked with it yet because I feel like it’s
probably going to have network latency problems on really slow devices, so
for now my approach is to keep the amount of polyfills we load in not too
big, just see it as a necessary evil of probably 30% overhead of the bundle
is just damned polyfills you don’t need in modern browsers, but at least
modern browsers are faster anyway and then you can allow the network
overhead, but I also haven’t done any numbers on that. It was easier on our
build stack to do it like that.

Viewport issues

https://github.com/zloirock/core-js
https://polyfill.io/

How did you work around vh/vw issues, inconsistent on desktop and mobile? Did
you stop using them or find some combination that does the same thing in the
end?

It really depends on the specific problem. The scrollbar thing in many cases
might not be a big problem, if you do 100vw then it’s going to be a problem
because you’re going to have differences on the browser edge, but if it’s
50% of the browser width then you’re probably not going to care so much if
scrollbars are included or not. Then just individual workarounds. If you really
needed to be, maybe do it with a bit of JavaScript, with resize event listener
and check the browser properties window.clientWidth, whatever works,
test which combination of these is going to work to fix a given problem.

Intended effect for use of vh? To fill the viewport? Or the address bar?

Problem was with the 3D room planner app. Just want to have the whole
viewport filled and then the problem is what even is the whole viewport if
you scroll in and out, obviously the size is going to change. I think on most
mobile devices the viewport unit is considered without the scrollbar so then
initially it’s going to be too big and you’re going to have a scroll which feels
really funny, because if you scroll down, the scrollbar’s going to disappear
and then it’s actually going to be the right size. It’s not exactly how you’d
want it, it’s not going to just fill the viewport and you’re done, it’s going to
create a scroll effect and because the viewport changes size again the
scrollbar’s going to disappears.

Note: Scrollbar here refers to the address bar.

So whatever the size of the address bar, just fill the available space and not have
any scrolling?

Yeah that’s one use case, to be able to fill the screen and not have scrolling.
And maybe also to be able get rid of the scrollbar, because if you want to
have an immersive 3D thingy you probably don’t want the user to have to
stare at the URL bar. But you also can’t hide it initially and you want to fill
the whole screen. I think there’s no browser support for that use case. But
it’s also about having more transparency about what browser elements are
on the screen. Because on mobile there’s quite a few, on the bottom, on the
top, maybe some overlays. There’s the safe areas now, and I think there’s

the new CSS env() function that allows you to access browser-defined
environment variables that affect [inaudible]. So that’s probably going to be
a big improvement on that already. But also generally more transparency
from the browser about what the browser is doing with my web page, so
that my web page can respond to that.

Magic wand question

Oh dear, that’s a really hard one. I like that it’s different implementations, I
don’t want it to be just one browser engine, I wouldn’t want that. But I think
due to the history of the web coming to mobile, a lot of focus on supporting
desktop-native websites, there hasn’t been so much work on the rendering
part related to mobile. There’s been a lot of work on making APIs available,
and the whole PWA thing, but if you want to have the web experience of
just opening a damned website and it works, and you don’t even need to
install a app or have the icon on your homescreen, but still want to make
the best of the viewport that you have. It would be nice to have better
support for touch and all the different native inputs, and also how they act
on the browser. Also on desktop when it comes to stuff like trackpads and
these things, I think it’s also really hard to do gestures on trackpads in the
lab.

Participant 13
Flexbox

Recent layout issue where browsers behave differently, in responsive layout or
even outside of that?

Most of the problems I’ve had have been with Flexbox. Especially when you
apply Flexbox in a layout you have to be aware of the different syntax for
different browsers, and that’s really painful. If you forget something you can
have issues in some browsers. I’ve had a lot of problems with vertical
Flexbox and Safari, for example. Even having a specific syntax it doesn’t
behave the same way, I think, in vertical Flexbox. Where you apply Flexbox
to columns and not rows and want to center whatever content vertically,
I’ve had a lot of issues with that. Specifically things like flex auto, flex 100%,
I’ve been having to apply that specifically for Explorer and Edge. I think
there’s a lot of different behaviors between browsers regarding Flexbox.

You mentioned Safari on mobile, flex with vertical positioning. Do you remember
hitting anything like that recently, where you had to find a workaround?

I remember, but wasn’t able to fix it, so I had to get rid of Flexbox, finally,
and apply table displays for what I wanted to achieve. But it wasn’t Safari
mobile, it was desktop.

So you wanted to use Flexbox to vertically position?

The layout was: everything was vertically centered in the layout, the whole
content, and it had to be always centered in the screen, in the browser, and
I couldn’t use Flexbox for that. I also think we normally tend to use Flexbox
for things that it’s not intended for, and I think that’s because we didn’t have
CSS Grid until now, until very recently. So we didn’t have a real layout way…

Grid

Do you use Grid now?

Yes, we’re starting to use it right now. I think it’s kind of becoming stable
right now, all browsers have implemented CSS Grid. I don’t think you can
use it for every kind of layout, either, it depends on the layout you want to
implement, but it’s really useful. And it behaves correctly, I think that’s been
one of the great things, because every vendor has implemented that, and
that’s been like a success for us. Because you’re sure you can use it and
you’re not going to have big issues with it. So that is great, yes.

Magic wand question

Maybe this isn’t going to sound very good, but I wish there was only one
browser for everything. That would be less time for me testing, testing, and
testing. But there has to be some kind of… when there’s several people
working on the same thing, that’s a good thing. I mean, the other way would
be like a dictatorship or something like that.

